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Abstract

In this paper, we consider bilevel optimization problem where the lower-level has coupled
constraints, i.e. the constraints depend both on the upper- and lower-level variables. In particular,
we consider two settings for the lower-level problem. The first is when the objective is strongly
convex and the constraints are convex with respect to the lower-level variable; The second is
when the lower-level is a linear program. We propose to utilize a barrier function reformulation to
translate the problem into an unconstrained problem. By developing a series of new techniques,
we proved that both the hyperfunction value and hypergradient of the barrier reformulated
problem (uniformly) converge to those of the original problem under minimal assumptions.
Further, to overcome the non-Lipschitz smoothness of hyperfunction and lower-level problem for
barrier reformulated problems, we design an adaptive algorithm that ensures a non-asymptotic
convergence guarantee. We also design an algorithm that converges to the stationary point of
the original problem asymptotically under certain assumptions. The proposed algorithms require
minimal assumptions, and to our knowledge, they are the first with convergence guarantees when
the lower-level problem is a linear program. Numerical experiments are conducted to show the
effectiveness of the proposed method.

1 Introduction

Bilevel optimization (BLO) is drawing wide attention in the communities including machine
learning, operations research and signal processing. It observes wide applications in various machine
learning problems, such as hyperparameter optimization (Maclaurin et al., 2015b; Franceschi et al.,
2018), meta learning (Finn et al., 2017; Franceschi et al., 2018; Ji et al., 2021) and reinforcement
learning (Stadie et al., 2020; Zeng et al., 2024; Li et al., 2024a,b). In the field of operations research,
BLO finds its applications in pricing, transportation design, game theory, among others (Labbé and
Violin, 2016; Silvério et al., 2022). Standard BLO takes the form:

min
x,y∗(x)

f(x, y∗(x)) s.t. x ∈ X , y∗(x) ∈ argmin
y∈Y(x)

g(x, y), (1.1)

where f is called the upper-level objective and g is called the lower-level objective; X ⊆ Rn, and
Y(x) ⊆ Rm are feasible sets for the upper- and lower-problems, respectively. In game theory, the
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bilevel problem can be thought of as a two-player (Stackelberg) game, the lower-level and upper-level
problems are also called the follower and the leader, respectively; see e.g. Kohli (2012); Liu et al.
(2018).

In BLO with unconstrained lower-level problems where Y ≡ Rm, a popular class of algorithms
are referred to as the implicit gradient descent method (Ghadimi and Wang, 2018; Yang et al., 2021;
Hong et al., 2023; Pedregosa, 2016). Let us denote the hyperfunction ϕ as

ϕ(x) := min
y∗(x)

f(x, y∗(x)), where y∗(x) ∈ argmin
y∈Rm

g(x, y). (1.2)

The implicit gradient descent method operates by using the implicit function theorem to compute
(some approximated version of) the gradient of ϕ(x), which we refer to as the hypergradient ∇xϕ(x)

1,
thus allowing us to apply gradient descent-type of methods to ϕ(x). Indeed, as we will discuss
shortly, there has been tremendous recent success in developing efficient implicit gradient decent-type
methods and analytical approaches for unconstrained problems where Y(x) ≡ Rm. However, it is
still unclear how to effectively leverage these developments for problems with lower-level constraints.
In particular, the constrained lower-level solution y∗(x) ∈ argminy∈Y(x) g(x, y) could be nonsmooth,
discontinuous or even set-valued based on the specific form of Y(x) and g(x, y) (see Khanduri et al.
(2023, Page 3) and our Example 3.1).

In this work, we consider the following BLO problem with lower-level constraints:

min f(x, y∗(x)) s.t. x ∈ X , y∗(x) ∈ argmin
{y:hi(x,y)≤0, i=1,...,k}

g(x, y), (1.3)

where f(x, y) : Rn ×Rm → R is (possibly) a non-convex function, also with the lower-level objective
function g(x, y) : Rn × Rm → R and the constraints hi(x, y) : Rn × Rm → R and X is a compact
set. We refer to lower-level constraints as coupled, meaning that (at least one) of the constraint
functions hi(x, y), i ∈ [k], depends on both x and y. Otherwise, they are referred to as uncoupled.

If the constraints of the lower-level problem are uncoupled, many algorithms have been studied to
deal with such problems. However, these algorithms fail to solve coupled constrained problems. While
there are studies addressing coupled constrained BLO, they typically rely on strong assumptions
and often only guarantee asymptotic convergence. For more details about these existing works,
see Section 1.1. To avoid assumptions that are difficult to verify and to achieve non-asymptotic
convergence results, in this work we propose a barrier function-based method for BLO. More
specifically, we consider a smooth approximation of the original problem (1.3) as follows

min f(x, y) s.t. x ∈ X , y = argmin
y∈Rm

g̃t(x, y) := g(x, y)− t
k∑

i=1

log(−hi(x, y)), (1.4)

where t is a sufficiently small fixed constant. That is, we transform the lower-level constraints
into a log-barrier added to the lower-level objective function, thereby converting the lower-level
problem into an unconstrained one. Theoretically, this transformation makes the gradient of the
hyperfunction computable, allowing us to use the standard implicit function approach to solve
the resulting BLO problem efficiently and with theoretical guarantees. Practically, log-barrier
reformulation models decision-making processes more realistically: instead of abruptly rejecting a
decision at the boundary, it gradually decreases acceptance as the decision variable approaches the
boundary, simulating a continuous and natural decline in feasibility.

Next, we will review related works for solving various forms of BLO problems discussed so far.

1Note, such a function exists under certain conditions, which can be broader than the one stated above; We will
discuss those conditions in detail later.
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Algorithm g(x, y)&h(x, y) Reformulation Complexity Nonstandard Assumptions

IGBA† S-C&C BR non-asymptotic needed

GAM S-C&C OP asymptotic not needed

BSG† S-C&C KR asymptotic needed

iP-DwCA† J-W-C&J-C MVFR asymptotic needed

APPM† C&C VFR non-asymptotic needed

BiC-GAFFA† C&C LPR non-asymptotic needed

IGOGIC S-C&L LPR non-asymptotic needed

BLOCC† S-C&C LPR non-asymptotic needed

BFBM (proposed) S-C&C or L&L BR non-asymptotic not needed

Table 1: Comparison of BFBM algorithm (our proposed Algorithm 1) with different algorithms for addressing
coupled constrained BLO problem: IGBA (Tsaknakis et al., 2023b), GAM (Algorithm 1 in Xu and Zhu (2023)), BSG
(Giovannelli et al., 2021), iP-DwCA (Gao et al., 2023), APPM (Algorithm 4 in Lu and Mei (2024)), BiC-GAFFA (Yao
et al., 2024), IGOGIC (Algorithm 5 in Kornowski et al. (2024)), BLOCC (Algorithm 1 and 2 in Jiang et al. (2024)).
BR means barrier reformulation; KR means KKT-based reformulation; MVFR means relaxed Moreau envelope-based
Value function reformulation; VFR means Value function reformulation; LPR means Lagrangian-based penalized
reformulation; OP means original problem. C means convex in y; S-C means strongly convex in y; N-C means
non-convex in y; J-C means jointly convex in (x, y); J-W-C means jointly weakly convex in (x, y); L means linear
in y. † means that authors did not consider the relation of the stationary point between reformulation and original
problem, or the relation of hypergradient between reformulation and original problem. Nonstandard assumptions refer
to assumptions beyond LICQ, Lipschitz smoothness, compactness, and Slater condition.

1.1 Related Works

Bilevel Optimization without lower-level constraints. BLO without lower-level constraints
has seen remarkable advancements through gradient-based approaches such as approximate implicit
differentiation (AID) and iterative differentiation (ITD). AID, utilizing the implicit function theorem,
approximates the hypergradient and has demonstrated effective finite-time, and finite sample (when
the problem is stochastic) convergence for unconstrained, strongly convex lower-level problems
(Ghadimi and Wang, 2018; Yang et al., 2021; Hong et al., 2023; Pedregosa, 2016). ITD further
enhances convergence by differentiating the entire iterative algorithm used at the lower-level, sup-
ported by substantial subsequent works (Maclaurin et al., 2015a; Franceschi et al., 2017; Nichol et al.,
2018; Ji et al., 2021). Utilizing AID and momentum-based algorithms, Khanduri et al. (2021); Yang
et al. (2023) achieves O(ϵ−3) rate of convergence to achieve an ϵ-stationary point for stochastic BLO.
Additionally, penalty-based methods have become popular, simplifying computational complexities
by transforming BLO into single-level problems using various penalty terms (Mehra and Hamm,
2019; Shen et al., 2023; Kwon et al., 2024). Both AID and ITD utilize the Hessian of the lower-level
objective for estimating the hypergradients, and a recent line of works (Kwon et al., 2023; Yang
et al., 2023) develops fully first order algorithms by leveraging finite-difference to estimate the
Hessian-vector product needed to compute the hypergradients.
Bilevel Optimization with lower-level constraints. BLO with lower-level constraints is
significantly more complex as compared with their unconstrained counterparts. Previous studies
have typically addressed upper-level constraints in various works (Chen et al., 2022a,b). Approaches
for uncoupled lower-level constraints include the SIGD method (Khanduri et al., 2023), which targets
the constraint Ay ≤ b and demonstrates asymptotic convergence. Shi et al. (2024) proposes a double-
momentum based algorithm for lower-level constrained BLO and provides convergence analysis
toward the so-called (δ, ϵ)-stationary point, where they use a finite-difference technique to avoid the
computation of Hessian-vector product and yield a dimension-dependent rate of convergence. Works
such as Shen et al. (2023); Kwon et al. (2024) utilize penalty reformulations to handle both upper
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and lower uncoupled constraints. In particular, if the lower-level constraint is a smooth manifold
(for example, a sphere), Li and Ma (2024); Han et al. (2024); Dutta et al. (2024) consider manifold
optimization techniques for efficiently solving the lower-level constrained BLO problems. However,
none of these works are able to handle lower-level coupled constraints, i.e. the situation where
the lower-level constraints vary according to x. For example, in Shen et al. (2023), the authors
introduce a penalty-based bilevel gradient descent (PBGD) algorithm that reformulates the bilevel
problem into a single-loop penalized problem solved using the projected gradient descent method.
However, despite the convexity of the feasible set Y(x) := {y : hi(x, y) ≤ 0, i = 1, ..., k} for each x,
the product set X × Y(x) may not retain convexity. Therefore, in the case of coupled constraints,
the PBGD algorithm that transforms the original problem into a single loop algorithm will no longer
be applicable, as the domain may now be non-convex. Moreover, the method of computing the
gradient of the value function, which is necessary for the PBGD algorithm, is also not applicable
in the case of coupled constraints. In Khanduri et al. (2023), the authors employed an implicit
gradient descent-based method, but the calculation of the hypergradient is no longer applicable in
the coupled case.

When we have lower-level coupled equality constraints which are affine in y (e.g. {y : h(x)+Ay =
c}), Xiao et al. (2023) considers a direct extension of AID-based method for hypergradient estimation.
The key in their analysis is that equality constraints will not affect the differentiability of the lower-
level solver y∗(x) (see Lemma 2 in Xiao et al. (2023)). Another work that deals with lower-level
equality constraints is Kornowski et al. (2024), where the authors propose a finite-difference
approximation method for the hypergradient, provided that the lower-level equality constraint is
linear for both x and y.

However, lower-level (coupled) inequality constraints are much harder to deal with since inequality
constraints will result in a nonsmooth lower-level solver y∗(x). In Giovannelli et al. (2021), the
authors consider stochastic BLO with lower-level coupled inequality constraints and provide an
asymptotic convergence analysis to the stationary point under the assumption that for each x, there
exists a lower-level solver y∗(x) satisfying the lower-level KKT conditions such that LICQ, strict
complementarity slackness condition (SCSC) and second-order sufficient condition (SOSC) are also
satisfied. Xu and Zhu (2023) proposed a gradient approximation scheme for the hypergradient
also under LICQ assumptions on the lower-level constraints and proved its asymptotic convergence
to the stationary points. Gao et al. (2023) consider a Moreau Envelope-based algorithm and
obtain an asymptotic convergence result. Recently, Jiang et al. (2024) considered a penalty-based
primal-dual reformulation to translate the BLO with lower-level coupled constraints problem into a
single-level minimax optimization. The authors proved a non-asymptotic rate of convergence for the
reformulated problem toward ϵ-stationary points under the assumptions that LICQ is satisfied at
each point and an upper bound for the dual variable (see Lemma 2 in Jiang et al. (2024)). Beyond
LICQ, they also need a curvature condition assumption on the multipliers to obtain this convergence
result (see Assumption 5 in Jiang et al. (2024)), and such an assumption is often not easy to verify.
Another recent work Yao et al. (2024) also considers a penalty-type reformulation and provides
a non-asymptotic rate of convergence toward the ϵ-stationary point of the reformulated problem.
However, this algorithm is largely an infeasible algorithm and needs an explicit assumption on the
upper bound of the function value at each iteration in order to achieve feasibility. Lu and Mei (2024)
also considers a penalty reformulated problem of the lower-level constrained BLO and shows the
asymptotic convergence toward stationary points under appropriate assumptions. When each of
the coupled constraints is linear to both x and y, Kornowski et al. (2024) proposes a penalty and
finite-difference based algorithm which converges to (δ, ϵ)-stationary point with a non-asymptotic
rate under the assumption of having access to the optimal dual variable, which is difficult in practice.
We summarize these literature on BLO with lower-level coupled inequality constraints along with
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our proposed algorithm in Table 1.
A recent work Tsaknakis et al. (2023b) proposed a certain barrier approximation approach for

BLO problems. Despite the fact that the idea of using barrier approximation is close to the current
work, the relationship between the reformulation and the original problem is not fully investigated.
Further, an explicit and unconventional assumption on the lower-level constraint function values is
imposed to achieve theoretical convergence. Moreover, a black-box lower-level solver is required to
avoid the non-Lipschitz smooth nature of the barrier reformulated lower-level problem.

Additionally, it is worth mentioning that the coupled constrained problem has recently been
investigated for a special subclass of the BLO problem: the minimax problem. Tsaknakis et al.
(2023a) defined a type of local minimum point for minimax problems with coupled constraints and
designed an algorithm that converges to such points.

1.2 Contributions

As mentioned before, in this work we propose a reformulation (1.4), and show that it approximates
well to the original problem (1.3), in terms of both function values and gradients. Further, we
propose an algorithm that optimizes the reformulated problem, and analyze its non-asymptotic
convergence under mild conditions. Our main contributions are summarized below:

1. To our knowledge, this is the first work that systematically study the approximation error
between the barrier reformulated problem (1.4) and the original problem (1.3) in terms of both
hyperfunction values and hypergradients2. In particular, we show that approximation errors
of hyperfunction values can be properly quantified not only when the lower-level objective g is
strongly convex in y and the constraints hi(x, y)’s are convex in y, but also when the lower-level
objective g and constraints hi(x, y)’s are all linear in y. To the best of our knowledge, we are
the first to prove such a result for the latter setting. We also proved the asymptotic convergence
of hypergradient at SCSC point (see Definition 3.1) as the barrier coefficient t goes to 0
within these two settings. To show these results, we develop several novel proof techniques.
In particular, we first show limt→0 y

∗
t (x) = y∗(x) where y∗(x) and y∗t (x) are the optimal

lower-level solution for (1.3) and (1.4) respectively. We further show that differentiation and
limits are interchangeable, i.e. limt→0∇xy

∗
t (x) = ∇x limt→0 y

∗
t (x) = ∇xy

∗(x), by establishing
the uniform convergence of ∇xy

∗
t (x). This interchangeability is crucial for the convergence of

the hypergradient.

2. Based on the previous contribution, we develop a new adaptive algorithm that theoretically
achieves non-asymptotic Õ(1/(ϵ2t4.5)) convergence rate to the ϵ stationary point of the barrier
reformulated problem (1.4) under mild assumptions. One challenge in our algorithm design and
analysis is that g̃t(x, y

∗
t (x)) explodes when hi(x, y

∗
t (x)) is close to zero, so the hyperfunction

and lower-level problem of (1.4) may not enjoy global Lipschitz gradient property. To overcome
this difficulty, we present a key result (in Theorem 4.1), which states that if hi(x, y

∗
t (x)) tends

towards zero as t approaches zero, it does so at most linearly with respect to t, and the linear
coefficient is independent of both t and x. This result allows us to transform the original
non-Lipschitz smooth lower-level problem into a Lipschitz smooth one by shrinking the feasible
set of the lower-level problem, and to design the step sizes for the outer loop adaptively.
Additionally, under strongly convex setting, when assuming that the upper-bounds for some
provably bounded terms are known, the convergence rate can be improved significantly to
Õ(1/(ϵ2t1.5)).

2Note that the approximation error in terms of hyperfunction values when g is strongly convex is first studied in
Tsaknakis et al. (2023b), whereas the hypergradient is not studied before.
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3. We provide numerical experiments on a class of strongly convex lower-level problems and a
class of linear lower-level problems, both with linear inequality constraints. We compare our
method with a number of existing works and verify the effectiveness of the proposed method.
Our algorithm is the only one that always guarantees that the obtained solution is feasible for
the lower-level problem, and it is the most effective algorithm among those we tested when
lower-level is a linear program.

1.3 Notations and Terminology

The basic notations used throughout this paper are introduced in this section. Additional notations
can be found in Appendix B.1 for clarity and reference:

• Rn is the Euclidean space of dimension n, ⟨·, ·⟩ and ∥ · ∥ are the canonical inner product and
norm of Euclidean space;

• Bx(r) is the ball centered at the point x with radius r, i.e. Bx(r) = {z ∈ Rn : ∥z − x∥ ≤ r};

• Let y∗(x) and y∗t (x) be the optimal solution set of the original problem (1.1) and the barrier
reformulation problem (1.4) respectively;

• Let ϕ(x) and ϕ̃t(x) be hyperfunction (see (1.2) and (3.1) for definition) of the original
problem (1.1) and the barrier reformulation problem (1.4) respectively, and g̃t(x, y) :=
g(x, y)− t

∑k
i=1 log(−hi(x, y)) be the reformulated lower-level objective function;

• Define Y(x) := {y : hi(x, y) ≤ 0, i = 1, ..., k} as the feasible set of lower-level problem, and k
is the number of constraints for lower-level problem;

• Õ(·) represents O(·) with logarithmic term omitted.

2 Motivating Application

Let us briefly discuss a few applications for the considered BLO problems.
Linear Setting: In the first setting, both g(x, y) and hi(x, y) are linear functions of y for any
i. One relevant application is the bilevel price-setting problem in the transportation context (see
Labbé and Violin (2016)), which can be formulated as:

max
T

T⊤x (2.1)

s.t. (x, y) ∈ arg minx,y (c1 + T )⊤x+ c⊤2 y

s.t. A1(T )x+A2(T )y ≥ b(T ), x, y ≥ 0

where T ∈ Rdx is the upper-level decision variable, representing the tax value, and (x, y) ∈ Rdx ×Rdy

are the lower-level decision variables, corresponding to the allocation of transportation activities
across taxable and untaxable routes. The matrices A1(T ) ∈ Rk×dx and A2(T ) ∈ Rk×dy represent
the constraints that govern the feasibility of transportation along taxed and untaxed routes.

In this specific transportation setting, the leader is a regulatory authority or city planner, who
decides the tax value T on transportation activities. The leader’s goal is to maximize the revenue
from the tax, represented by T⊤x. The follower is a freight transporter who needs to minimize
their total transportation cost, which includes both the tax on taxable routes and the cost of using
taxed and untaxed routes. The cost function is (c1 + T )⊤x + c⊤2 y, where c1 and c2 are the cost
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coefficients for the taxable and nontaxable routes, respectively, and T adjusts the cost of the taxable
routes. The matrices A1(T ) and A2(T ) represent coefficients that influence the capacity or feasibility
of using taxed and untaxed routes for transportation, and b(T ) means demands from different
customers. These matrices depend on T because the tax may impact the availability or cost of
using taxed routes. The inequality A1(T )

⊤x+A2(T )
⊤y ≥ b(T ) ensures that customer demands are

met. The constraints x, y ≥ 0 enforce that the quantities of goods transported along both types of
routes cannot be negative, reflecting the real-world constraint that transportation volumes must be
non-negative.
Strongly Convex Setting: In the second setting, g(x, y) is strongly convex, and hi(x, y) are
convex in y for any i. The primary applications in this setting arise from machine learning. For
example, support vector machines (SVM) inherently possess a bilevel optimization structure, where
hyper-parameter optimization can be framed as a constrained BLO problem; we refer the readers to
recent works such as (Jiang et al., 2024; Xu and Zhu, 2023) for more detailed discussions.

3 Barrier Reformulation of Bilevel Problems

In this section, we will explore the hyperfunction of the barrier reformulation (1.4), defined below,
and its relationship with the hyperfunction of the original problem (1.3):

ϕ̃t(x) = f(x, y∗t (x)), where y∗t (x) = argmin
y∈Rm

g̃t(x, y) := g(x, y)− t
k∑

i=1

log(−hi(x, y)). (3.1)

Specifically, we first demonstrate that the barrier reformulation is differentiable under certain
conditions. This is mainly because the lower-level problem is strictly convex (see Proposition
3.1). Subsequently, we investigate the convergence of the function values and gradients of the
hyperfunction as t approaches 0, under various different assumptions of the lower-level problem.

3.1 Preliminaries

In this section, we study some basic properties of the barrier reformulation problem (1.4). We make
the following assumption throughout this section.

Assumption 3.1. The following holds for every x ∈ X , y ∈ Y(x), and i ∈ {1, ..., k}

1. f(x, y) is once while g(x, y) and hi(x, y) are twice continuously differentiable;

2. X is convex and compact, and for any x ∈ X there exists y ∈ Y(x) such that hi(x, y) < 0 for
any i ∈ {1, 2, ..., k};

3. Linear Independence Constraint Qualification (LICQ) is satisfied for any (x, y) where x ∈ X
and y ∈ y∗(x) = argminy∈Y(x) g(x, y), i.e. the gradients {∇yhi(x, y) : i is active} are linearly
independent for any x ∈ X and y ∈ y∗(x).

Assumption 3.1(1) is a basic assumption in the BLO literature (Ghadimi and Wang, 2018; Hong
et al., 2023; Xu and Zhu, 2023). Assumption 3.1(2) says that Slater’s condition is satisfied for
any x which is a common assumption for studying BLO problems under constraints (Tsaknakis
et al., 2023b; Schmidt and Beck, 2023; Beck et al., 2023). Assumption 3.1(3) is also a standard
requirement, commonly used across various studies in BLO (Jiang et al., 2024; Kornowski et al.,
2024; Khanduri et al., 2023).

Next, we have two different set of assumptions on g(x, y) and hi(x, y)’s.

7



Assumption 3.2. g(x, y) is µg-strongly convex in y for any x ∈ X ; hi(x, y) is convex in y for any
x ∈ X and i ∈ {1, ..., k}.

Assumption 3.3. g(x, y), hi(x, y)’s are all linear in y for for any x ∈ X and i ∈ {1, ..., k}, i.e. the
lower-level problem is a linear program, and Y(x) is compact for any x ∈ X .

Remark 3.1. When the lower-level problem is a linear program, to make sure the feasible set Y(x)
is compact, the number of constraints should be greater than the dimension of the lower-level problem,
i.e. k ≥ m.

The strong convexity requirement in Assumption 3.2 has been the focus of most recent research
on BLO, such as Xu and Zhu (2023); Khanduri et al. (2023); Hong et al. (2023); Yao et al. (2024).
In contrast, Assumption 3.3, which requires that the lower-level problem is a linear program, has
not yet been explored. The compactness of the feasible set in the lower-level problem is a technical
assumption made to ensure that the hyperfunction in the barrier reformulation is differentiable,
which is observed in the following proposition. See Appendix D.1 for proof.

Proposition 3.1. Suppose that Assumption 3.1(1) and Assumption 3.1(2) hold, and either Assump-
tion 3.2 or Assumption 3.3 holds. Then g̃t(x, y) is strictly convex in y, and ϕ̃t(x) is differentiable
for any t > 0 and x ∈ X .

We note that the above result holds regardless of the number of the lower-level optimal solutions
for the original problem (1.3). The differentiability of ϕ̃t(x) allows us to design algorithms for the
barrier reformulated problem. However, before we design algorithms, we need to understand the
relationship between ϕ̃t(x) and the original hyperfunction ϕ(x).

3.2 Convergence of Hyperfunction Value for Barrier Reformulation

In this section, we study the relationship between the hyperfunction of problems (1.3) and its
barrier reformulation (1.4). Such a study is critical as it helps reveal the utility of the proposed
reformulation.

Under Assumption 3.2 where the lower-level problem is strongly convex in y, it can be shown
that hyperfunction of the original problem and that of the barrier reformulated problem can be
bounded uniformly (see Tsaknakis et al. (2023b)):

Theorem 3.1 (Lemma 1 in Tsaknakis et al. (2023b)). Suppose that Assumption 3.1(1), 3.1(2),
and Assumption 3.2 hold. If f is Lipschitz continuous with coefficient Lf , then the following holds:

|ϕ̃t(x)− ϕ(x)| ≤ Lf

(
2kt

µg

)1/2

.

Under Assumption 3.3, i.e. the linear setting, we aim to establish the error bound between the
hyperfunction values as a function of t when y∗(x) is unique. The reason that we do not attempt to
show global uniform bounds is that in the case where the lower-level problem is a linear program,
the hyperfunction of the original problem may be discontinuous, and even for the continuous points,
the bound may not be uniform. Below we provide an example.

Example 3.1. Consider a BLO with f(x, y) = y1 with x ∈ R, y = (y1, y2)
⊤ ∈ R2. Further, the

lower-level problem takes the following form:

min
y

g(x, y) := xy1 + y2
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s.t. y2 ≥ 0, y1 ≥ −1, y1 ≤ 1.

It is easy to see that the lower-level problem has the following solutions:

argmin
y

g(x, y) =


(−1, 0), if x > 0

[−1, 1]× {0}, if x = 0

(1, 0), if x < 0.

The barrier-penalized reformulation of g(x, y) is:

g̃t(x, y) = xy1 + y2 − t(log(y2) + log(1− y1) + log(1 + y1)).

Direct calculation shows that its stationary point isy1 =

{
0, if x = 0
t−

√
t2+x2

x , if x ̸= 0

y2 = t.

The hyperfunction of the original problem is

ϕ(x) =

{
−1, if x ≥ 0

1, if x < 0

and the hyperfunction corresponding to the barrier-penalized reformulation is

ϕ̃t(x) =

{
0, if x = 0
t−

√
t2+x2

x , if x ̸= 0.

However,
∣∣∣ϕ̃t(0)− ϕ(0)

∣∣∣ = 1 for any t. Moreover, when x ̸= 0, we have
∣∣∣ϕ̃t(x)− ϕ(x)

∣∣∣ = | t−
√
t2+x2

x +

1| when x > 0 or
∣∣∣ϕ̃t(x)− ϕ(x)

∣∣∣ = | t−
√
t2+x2

x − 1| when x < 0, and both of these terms do not admit

a uniform bound with respect to t.

Clearly, the discontinuity at x = 0 arises because y∗(x) experiences a jump when transitioning
from x > 0 to x < 0, or, in other words, y∗(0) is not unique. Further, it is important to note
that even if we exclude the point 0, there does not exist a uniform error bound as a function
of t and is independent of x. Therefore, under the linear setting, we will only analyze those x
that admits unique y∗(x), and we seek to establish a pointwise convergence relationship, that is,
limt→0 ϕ̃t(x) = ϕ(x). In the case where the lower-level problem is simply a linear program the
uniqueness of the solution then depends on its dual solution being non-degenerate. Since vector
x plays the role of the right-hand side of the dual constraints in this case, if x is subject to small
perturbations or imprecision then by the perturbation theory for linear programming, the dual
optimal solution of the lower-level problem is likely to be non-degenerate after perturbation. Hence,
the primal, which is the lower-level problem itself, will likely have a unique optimal solution in that
case.

To proceed with our analysis, we first present the following known result (exercise 11.12(b) in
Chapter 11 of Boyd and Vandenberghe (2004)).

Lemma 3.1 (Optimality gap). Suppose that Assumption 3.1(1), 3.1(2) hold, and g(x, y), hi(x, y)’s
are convex in y, then we have the optimality gap

g(x, y∗t (x))− g(x, y∗(x)) ≤ kt.
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To use the above result under linear setting, note that if y∗(x) is unique, then for any point y
within the feasible region of the lower-level problem, the cosine of the angle between y − y∗(x) and
the ∇yg(x, y

∗(x)) has a positive lower bound for any fixed x, which we denote as τ(x), i.e.

τ(x) = argmin
y∈Y(x)

⟨y − y∗(x),∇yg(x, y
∗(x))⟩

∥y − y∗(x)∥∥∇yg(x, y∗(x))∥
.

It follows that:

g(x, y)− g(x, y∗(x)) = ⟨y − y∗(x),∇yg(x, y
∗(x))⟩ ≥ τ(x)∥∇yg(x, y

∗(x))∥ · ∥y − y∗(x)∥.

By uniqueness of y∗(x) and Slater condition, ∇yg(x, y
∗(x)) ̸= 0, then we obtain:

∥y − y∗(x)∥ ≤ 1

τ(x)∥∇yg(x, y∗(x))∥
(g(x, y)− g(x, y∗(x))) . (3.2)

Combining Lemma 3.1, we obtain

∥y − y∗(x)∥ ≤ kt

τ(x)∥∇yg(x, y∗(x))∥
.

If we further assume that f(x, y) is Lf -Lipschitz continuous, then

|ϕ̃t(x)− ϕ(x)| = |f(x, y∗t (x))− f(x, y∗(x))| ≤ Lf
kt

τ(x)∥∇yg(x, y∗(x))∥
.

To conclude, we establish the following theorem:

Theorem 3.2 (Hyperfunction value convergence under Linear setting). Suppose that Assumption
3.1(1), 3.1(2), and Assumption 3.3 hold. If f(x, y) is Lipschitz continuous with coefficient Lf and
y∗(x) is unique at point x, then

|ϕ̃t(x)− ϕ(x)| ≤ Lf
kt

τ(x)∥∇yg(x, y∗(x))∥
,

where τ(x) := argminy∈Y(x) cos ⟨∇yg(x, y
∗(x)), y − y∗(x)⟩ > 0.

3.3 Convergence of Hypergradient for Barrier Reformulation

In this subsection, we explore the convergence behavior of the hypergradient of the barrier refor-
mulation ∇xϕ̃t(x) as t goes to zero. Understanding this convergence is vital because optimization
algorithms commonly converge to points where the gradient is zero. Therefore, it is crucial to
ensure that when ∇xϕ̃t(x) approaches zero, ∇xϕ̃t(x) also becomes sufficiently small. Since the
hyperfunction of the original problem may be discontinuous (under linear setting, see Example 3.1)
or non-smooth (under strongly convex setting, see the example in Khanduri et al. (2023, Page 3)),
we aim to show asymptotic convergence at the smooth points of ϕ(x).

We present the following definition as an essential characterization of the smoothness of the
original problem.

Definition 3.1 (SCSC point). Suppose Assumption 3.1 holds. We say x is an SCSC (Strict
Complementarity Slackness Condition) point if for any y ∈ y∗(x), we have that hi(x, y) = 0
implies λi(x, y) > 0, where y∗(x) is the set of optimal solutions for the lower-level problem, and
λi(x, y) is the optimal Lagrangian multiplier corresponding the the i-th constraint.
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We first provide a remark regarding the notation of the multipliers.

Remark 3.2. Under the strong convex setting, y∗(x) is unique, so λi(x, y
∗(x)) only depends on x.

Under the linear setting, although y∗(x) is not unique and forms a set, due to the LICQ assumption,
the value of the multiplier λi(x, y) actually is independent of the choice of y in the optimal solution
set y∗(x). For the specific proof, see (a)⇒(b) part of the proof of the following Proposition 3.2.
Therefore, in both cases we denote λi(x, y

∗(x)) simply as λi(x) without loss of generality.

Note that ∇xϕ(x) = ∇xf(x, y) + (∇xy
∗(x))⊤∇yf(x, y), the existence of ∇xy

∗(x) is a sufficient
condition of the differentiability of the hyperfunction ϕ(x). The following proposition shows the
relation between SCSC point and the existence of ∇xy

∗(x). Please see Appendix E.1 for the proof.

Proposition 3.2. Suppose Assumption 3.1 holds. We have the following results:

1. If Assumption 3.2 holds, then x is an SCSC point implies ∇xy
∗(x) exists, but not vice versa;

2. If Assumption 3.3 holds, then following conditions are equivalent:

(a) x is an SCSC point;

(b) y∗(x) is unique;

(c) ∇xy
∗(x) exists.

We point out that Khanduri et al. (2023, Page 3) provides an example where the hyperfunction
is nonsmooth when SCSC is not satisfied, under the case that the lower-level objective function is
strongly convex.

Next, we develop an analysis of the asymptotic behavior of the error based on the SCSC
assumption, that is, we will show limt→0∇xϕ̃t(x) = ∇xϕ(x). By direct computation, we obtain:

lim
t→0

∇xϕ̃t(x) = lim
t→0

(
∇xf(x, y

∗
t (x)) + (∇xy

∗
t (x))

⊤∇yf(x, y
∗
t (x))

)
= ∇xf(x, y

∗(x)) +
(
lim
t→0

∇xy
∗
t (x)

)⊤
∇yf(x, y

∗(x)),

∇xϕ(x) = ∇xf(x, y
∗(x)) + (∇xy

∗(x))⊤∇yf(x, y
∗(x)).

Thus, the core issue is to prove that the Jacobian matrix converges, i.e. limt→0∇xy
∗
t (x) = ∇xy

∗(x).
We will prove this conclusion separately for the linear and strongly convex settings.

First, under the linear setting, the proof is relatively simple. This is because limt→0∇xy
∗
t (x)

has a very straightforward form, and ∇xy
∗(x) also has a simple local expression (see (E.16)), which

exactly equals limt→0∇xy
∗
t (x). In particular, we have the following result, whose proof can be found

in Appendix E.2.

Theorem 3.3 (Jacobian convergence under Linear setting). Suppose Assumption 3.1, 3.3 hold. If
x is an SCSC point of BLO problem (1.3), then we have limt→0∇xy

∗
t (x) = ∇xy

∗(x).

Under the strongly convex setting, the situation is more complicated. The reason is that
limt→0∇xy

∗
t (x) becomes very difficult to determine. Even though ∇xy

∗(x) is computable (Giorgi
and Zuccotti, 2018, Section 3), proving that it equals limt→0∇xy

∗
t (x) becomes extremely challenging.

Therefore, we use a different method to prove the conclusion.
Note that under the strongly convex setting, y∗t (x) uniformly converges to y∗(x), which is a direct

consequence of the optimality gap in Lemma 3.1. To prove limt→0∇xy
∗
t (x) = ∇x limt→0 y

∗
t (x) =

∇xy
∗(x), we essentially need to show that differentiation and limits are interchangeable. A common

11



sufficient condition for this interchangeability is that the Jacobian matrix ∇xy
∗
t (x) converges

uniformly in a neighborhood around x. By proving the uniform convergence of y∗t (x) to y∗(x)
(see Lemma B.1 in Appendix B.2) and local uniform convergence of ∇xy

∗
t (x) (see Lemma E.7

in Appendix E.3) of the Jacobian around the SCSC point, we are able to obtain the following
conclusion.

Theorem 3.4 (Jacobian convergence under Strongly convex setting). Suppose Assumption 3.1,
and Assumption 3.2 hold, i.e. when g(x, y) is strongly convex in y. If x is an SCSC point of BLO
problem (1.3), then we have limt→0∇xy

∗
t (x) = ∇xy

∗(x).

To conclude, we have the following main result for the hypergradient convergence in two cases.

Theorem 3.5 (Hypergradient convergence). Suppose Assumption 3.1 holds, and either Assumption
3.2 or Assumption 3.3 holds. If x is an SCSC point of BLO problem (1.3), then limt→0∇xϕ̃t(x) =
∇xϕ(x), where ∇xϕ̃t(x) is the hypergradient of the barrier reformulation (1.4).

The reader may wonder if the above convergence can be made uniform. However the remark
below indicates that such a form of convergence is impossible.

Remark 3.3. Denote the set of SCSC points as X̃ . Under Assumption 3.1, Assumption 3.2 or
Assumption 3.3, it is impossible to get uniform error estimation between ∇xϕ(x) and ∇xϕ̃t(x) even
on the set X̃ . This is because if the convergence of hypergradient for the barrier reformulation would
be uniform on X̃ , then it is not hard to prove that ∇xϕ(x) is well defined for any x on the boundary
of X̃ , denoted as ∂X̃ . However, the hypergradient of the original problem may not be well defined at
some point on ∂X̃ (see Example 3.1 and the example in Khanduri et al. (2023, Page 3)), which
leads to a contradiction.

4 Algorithm Design

So far we have studied the relations between the original problem (1.3) and the barrier reformulated
problem (1.4), including the function and gradient approximation errors. Now we turn to focus on
the algorithm design for solving the barrier reformulated problem (1.4) and provide both theoretical
and numerical evidence to support its effectiveness. We aim at designing algorithm that works both
for the linear and the strongly convex setting. To concisely state the assumptions required for this
section, we present them as follows:

Assumption 4.1. g(x, y) is µg-strongly convex in y for any x ∈ X ; hi(x, y) is convex in y for any
x ∈ X and i ∈ {1, ..., k}.

Assumption 4.2. g(x, y), hi(x, y) are all linear in y for any x ∈ X and i ∈ {1, ..., k}, i.e. the
lower-level problem is a a linear program.

Note that we only require one of the above two assumptions. Designing an algorithm that
works for both settings is highly non-trivial since we lose the global Lipschitz gradient for the
lower-level problem for both settings due to the existence of the log-barrier in (1.4), and the Lipschitz
smoothness of the hyperfunction ϕ̃t is largely unknown. In Tsaknakis et al. (2023b), to avoid this
difficulty, the authors impose an assumption (Assumption 3 in Tsaknakis et al. (2023b)) over the
function values of hi at the lower-level optimal points that directly results in the Lipschitz smoothness
of the lower-level problem and hypergradient. However, this assumption is not verifiable and the
level of difficulty drastically increases without such assumption. We thus design our algorithm by
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carefully controlling the local Lipschitz smoothness constant around the lower-level optimal solution
at each step, and meticulously controlling the stepsize for each update point. To proceed, we first
impose the following assumptions.

Assumption 4.3. The following holds for every x ∈ X , y ∈ Y(x), and i ∈ {1, ..., k}

1. f(x, y) is one time and g(x, y), hi(x, y) are two times continuously differentiable;

2. X is convex and compact, and for any x ∈ X there exists y ∈ Y(x) such that hi(x, y) < 0 for
any i ∈ {1, 2, ..., k};

3. For any x ∈ X , Y(x) is compact, and ∥y∥ ≤ R for any y in Y(x);

4. LICQ is satisfied for any (x, y) where x ∈ X and y ∈ y∗(x) = argminy∈Y(x) g(x, y), i.e. the
gradients {∇yhi(x, y) : i is active} are linearly independent for any x ∈ X and y ∈ y∗(x).

Note that differently as Assumption 3.2, we have assumed the compactness of Y(x) for both the
linear and the strongly convex setting. We also need the following smoothness assumptions.

Assumption 4.4. The following holds for every x, x ∈ X , y, y ∈ Y(x), and i ∈ {1, ..., k}

1. ∥∇(x,y)f(x, y)∥ ≤ Lf ;

2. ∥∇(x,y)f(x, y)−∇(x,y)f(x, y)∥ ≤ Lf∥(x, y)− (x, y)∥;

3. ∥∇(x,y)g(x, y)∥ ≤ Lg;

4. ∥∇2
yyg(x, y)∥ ≤ Lg; ∥∇2

xyg(x, y)∥ ≤ Lg;

5. ∥∇2
xyg(x, y)−∇2

xyg(x, y)∥ ≤ Lg∥(x, y)−(x, y)∥; ∥∇2
yyg(x, y)−∇2

yyg(x, y)∥ ≤ Lg∥(x, y)−(x, y)∥;

6. ∥∇(x,y)h(x, y)∥ ≤ Lh;

7. ∥∇2
yyh(x, y)∥ ≤ Lh; ∥∇2

xyh(x, y)∥ ≤ Lh;

8. ∥∇2
xyh(x, y) − ∇2

xyh(x, y)∥ ≤ Lh∥(x, y) − (x, y)∥; ∥∇2
yyh(x, y) − ∇2

yyh(x, y)∥ ≤ Lh∥(x, y) −
(x, y)∥.

These assumptions, except Assumption 4.4(3), are standard in BLO literature such as Ghadimi
and Wang (2018); Tsaknakis et al. (2023b); Shen et al. (2023). Assumption 4.4(3), which is an
assumption of an upper bound for ∇g(x, y), can be implied by the compactness of Y(x) and X .

4.1 The Proposed Algorithm

Now we are ready to establish the algorithm framework. We follow the standard bilevel implicit
gradient method as in Ghadimi and Wang (2018); Ji et al. (2021); Hong et al. (2023), where we
estimate the hypergradient ∇xϕ(x) at each update point x and conduct a gradient descent update
to get the next iterate.

Specifically, we first find the approximate optimal solution ŷ of the lower-level solver y∗(x) for
a fixed x, and such ŷ is obtained by some careful design (see Algorithm 2). In particular, since
the lower-level objective g̃t is not globally Lipschitz smooth in y, we need to carefully shrink the
feasible set and estimate a local Lipschitz smoothness constant in the shrunk set, which is reflected
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in Step 3 of Algorithm 2. Then an accelerated gradient descent step is employed to approximate
the lower-level optimal solution in Step 4 of Algorithm 2.

Upon obtaining the approximate optimal lower-level solution, we further design the update for
variable x in Algorithm 1. In particular, we use the implicit gradient methods to compute the
approximate gradient of the hyperfunction, which is

∇̂xϕ̃t(x) = ∇xf(x, ŷ)−∇2
xy g̃t(x, ŷ)

(
∇2

yy g̃t(x, ŷ)
)−1∇yf(x, ŷ),

where recall that the barrier reformulation for the lower-level problem is defined as

g̃t(x, y) = g(x, y)− t

k∑
i=1

log(−hi(x, y)). (4.1)

The main technical challenge to analyze the proposed algorithm is that the hypergradient may
suffer from non-Lipschitzness due to log barriers, similarly as the lower-level objective. In addition,
the inexact lower-level solution ŷ introduces approximation errors to the exact lower-level solver
y∗(x) which further increases the difficulties of the analysis. We overcome these difficulties and
obtain an Õ(1/ϵ2) rate of convergence (Theorem 4.3) by carefully designing the upper-level stepsize
ηs, which contains the information of local Lipschitz constants for the hypergradient. See Section
4.2 for details of the convergence analysis.

Algorithm 1: Hypergradient Based Bilevel Barrier Method for (1.4)

Step 0: Initialization. Given an initial point x0, the accuracy level ϵ, total iteration S.
for s = 0, 1, ..., S do
Step 1: Solve the inner loop. Solve the lower-level problem for ŷs via Algorithm 2
such that ∥ŷs − y∗(xs)∥ ≤ ϵs.
Step 2: Update xs.
Compute the following approximate gradient of ϕ̃t(x) at xs

∇̂xϕ̃t(xs) = ∇xf(xs, ŷs)−∇xy g̃t(xs, ŷs)(∇2
yy g̃t(xs, ŷs))

−1∇yf(xs, ŷs)

Update xs by

xs+1 = projX

(
xs − ηs∇̂xϕ̃t(xs)

)
where the stepsize ηs can be calculated according to (4.7) in Theorem 4.3.

Output xs with s = argmins=0,...,S−1{ 1
ηs
∥xs − xs+1∥}

4.2 Convergence Analysis

Now we aim to develop an algorithm with non-asymptotic convergence rate. We first discuss the
main difficulty.
Technical Difficulty: Algorithm 1 leverages the following approximation for the hypergradient:

∇̂xϕ̃t(x) = ∇xf(x, ŷ)−∇2
xy g̃t(x, ŷ)

(
∇2

yy g̃t(x, ŷ)
)−1∇yf(x, ŷ),

14



Algorithm 2: lower-level solver for Algorithm 1

Step 0: Initialization. Given reference point xs, stepsize γ, and constant d = 1.
Step 1: Find the initial d such that Yd is nonempty.
while Yd(xs) := {y : hi(xs, y) ≤ −d, i = 1, ..., k} is empty do

d = d/2

Denote ds := d and initialize y0 ∈ Yds(xs),
Step 2: Estimate the local Lipschitz smoothness constant.

1. Compute scalar ms by replacing d in (4.2) with ds from Step 1. Thus y∗t (xs) is contained
in Yms(xs) := {y : hi(xs, y) ≤ −ms, i = 1, ..., k};

2. Compute the Lipschitz smoothness constant Lg̃t,ms
of g̃t(x, y) in y on Yms(xs); Lg̃t,ms

can
be computed by replacing m in (4.3) with ms.

Step 3: Update based on current estimate of Lipschitz smoothness constant. for

j = 0, 1, ..., J − 1 := O(
√

Lg̃t,ms
/µg̃t log(1/ϵs)) do

Update

ω =


y0 if j = 0

yj +
1−

√
µg̃t

/Lg̃t,ms

1+
√

µg̃t
/Lg̃t,ms

(yj − yj−1) if j ≥ 1,

yj+1 = projYms (x)

(
yj −

1

Lg̃t,ms

∇y g̃t(xs, ω)

)
,

where the strongly convexity constant µg̃t is from Proposition 4.1.

Step 4: Output results. Output ŷs := yJ and constant ds, ms.

and it is necessary to estimate the Lipschitz constant of ∇̂xϕ̃t(x), which further requires an upper
bound estimate of ∇2

xy g̃t(x, ŷ). By directly computing the mixed Hessian (or referred to as Jacobian)

∇2
xy g̃t(x, ŷ) = ∇2

xyg(x, ŷ) + t
k∑

i=1

(
∇2

xyhi(x, ŷ)

−hi(x, ŷ)
+

∇xhi(x, ŷ)∇yhi(x, ŷ)
⊤

h2i (x, ŷ)

)
,

we need a negative upper bound estimate of hi(x, ŷ), which can be achieved by upper bounding
hi(x, y

∗
t (x)) if hi(x, ŷ) and hi(x, y

∗
t (x)) are close to each other. However upper bounding hi(x, y

∗
t (x))

is hard: if t is sufficiently small, for those indices i that are active in the original problem, hi(x, y
∗
t (x))

will also approach zero. On the other hand, in order to make sure that hi(x, ŷ) and hi(x, y
∗
t (x))

are as close as possible, we need to design an effective algorithm for the lower-level problem. It
is challenging to design an effective algorithm: due to the log-barrier, the gradient of barrier
reformulation g̃t(x) tends to explode near the boundary, making it not globally Lipschitz smooth.
Specifically, observe that the gradient of lower-level problem, given below

∇y g̃t(x, y) = ∇yg(x, y) + t
k∑

i=1

∇yhi(x, y)

−hi(x, y)
,

may goes to infinity when −hi(x, y) goes to zero. To overcome this, we consider the lower-level
problem in a shrunk set Yd(x) := {y : hi(x, y) ≤ −d, i = 1, ..., k}. In order to determine the size of
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d, such that y∗t (x) is still in this shrunk set Yd(x), we need to identify a negative value that upper
bounds hi(x, y

∗
t (x)). The next result establishes such an upper bound. Please see Appendix F.2 for

proof.

Theorem 4.1. Suppose 0 < t ≤ T , Assumption 4.3(1)(2)(3) and Assumption 4.4 all hold, and
either Assumption 4.1 or Assumption 4.2 holds. For a fixed x, if miny∈Y(x){maxi∈{1,...,k} hi(x, y)} ≤
−d < 0. Then for any i ∈ {1, ..., k}, we have hi(x, y

∗
t (x)) ≤ −m, where

m := min

{
t

d2

4dRLg + 4RTkLh
,
d

2

}
. (4.2)

Remark 4.1. Theorem 4.1 still holds when g(x, y) is non-convex in y, and hi(x, y) is convex in y
for any i. In this case, for m computed in (4.2), hi(x, y) ≤ −m holds for any y in the set y∗t (x).

Theorem 4.1 provides an interesting way to estimate the negative upper bound at the optimal
point hi(x, y

∗
t (x)): as long as there exists a tuple (y, d) in such that y ∈ Y(x) and hi(x, y) < −d

for any i, it is possible to compute the desired negative upper bound. This enable us to solve the
aforementioned difficulty without explicitly assuming a negative upper bound at the optimal point.

The next result computes the strong convexity constant of lower-level penalized objective g̃t(x, y),
allowing us to use accelerated gradient methods to obtain the global optimal solutions. The proof is
provided in Appendix F.1.

Proposition 4.1. Suppose the assumptions in Theorem 4.1 are satisfied, then for any fix x and t,
the barrier reformulation for the lower-level problem, expressed in (4.1), is µg̃t-strongly convex in
y ∈ {y : hi(x, y) < 0, i = 1, ..., k}. Further

1. µg̃t = µg when Assumption 4.1 holds;

2. µg̃t = t σ
H2 when Assumption 4.2 holds, for some constant H and σ be defined as follows:

• Denote σ(x) as the smallest eigenvalue of the following matrix (which is independent of
y due to the linearity of the lower-level problem)

(∇yh1(x, y), · · · ,∇yhk(x, y))
⊤(∇yh1(x, y), · · · ,∇yhk(x, y)).

Then set σ := minx∈X σ(x). We also have σ > 0;

• H := supi∈{1,...,k},x∈X ,y∈Yx
−hi(x, y). We also have H < ∞.

Remark 4.2. When Assumption 4.2 holds, i.e. the lower-level problem is a linear program, the
constant of strong convexity depends on σ, which is hard to compute for many applications. In
practice, it can be made more computable by adding a constraint hk+1(x, y) = ∥y∥2 ≤ R2 where
R is from Assumption 4.3. Adding this constraint will not affect the original problem because the
feasible set of the original problem is already contained within that ball, and we can immediately
obtain g̃t(x, y) is

2t
R -strongly convex.

Before proceeding to resolve the technical difficulty we discussed before, we need to emphasize
the following remark:

Remark 4.3. The assumed compactness of X and the Slater condition implies that there ex-
ists a positive constant D such that {y : hi(x, y) ≤ −D, i = 1, ..., k} ≠ ∅ for any x, because
maxy∈Y(x) hi(x, y) < 0 for any x ∈ X . In our analysis, we need to use D when proving the con-
vergence rate; however, we do not need to know the value of D a priori during the design of the
algorithm.
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In view of Theorem 4.1 and Remark 4.3, we can immediately obtain the following global estimate
on the upper bound for the constraints hi(x, y

∗
t (x)) and hi(x, ŷs), which will also be used for the

further convergence proof.

Corollary 4.1. By Remark 4.3 and Step 1 of Algorithm 2, the feasibility check must terminate
when d is between D/2 to D, thus ds is greater than D/2 for any s. By replacing d with D/2 in
Theorem 4.1, we have a positive lower bound estimate of ms, denoted as M . Note that by Step 3
of Algorithm 2, the projection guarantees that ŷs ∈ Yms(xs). Therefore we have hi(xs, ŷs) ≤ −M
for any s and i. Since y∗(xs) is also in Yms(xs) by Theorem 4.1, we have hi(xs, y

∗(xs)) ∈ YM (xs).
This implies hi(xs, y

∗(xs)) ≤ −M for any s and i.
In conclusion, −M is the upper bound of both the exact lower-level solution hi(xs, y

∗(xs)), and
the inexact lower-level solution hi(xs, ŷs) at each update point .

We are now ready to analyze the lower-level convergence of Algorithm 2. We first have the
following Lipschitzness property for the barrier reformulated lower-level problem.

Proposition 4.2. Suppose the assumptions in Theorem 4.1 are satisfied, then the following barrier
reformulated lower-level objective function

g̃t(x, y) = g(x, y)− t
k∑

i=1

log(−hi(x, y))

is Lg̃t,m-Lipschitz smooth with respect to y in the set Ym(x) := {y : hi(x, y) ≤ −m, i = 1, ..., k} for
any x, and

Lg̃t,m = Lg +
tkLh

m
+

tkL2
h

m2
. (4.3)

The proof of Proposition 4.2 is available in Appendix F.3. Now we state the convergence of the
lower-level Algorithm 2.

Theorem 4.2. Suppose Assumption 4.3(1)(2)(3) and Assumption 4.4 all hold, and either Assump-

tion 4.1 or Assumption 4.2 holds. For the output of Algorithm 2, within O(
√
Lg̃t,ms

/µg̃t log(1/ϵs))

number of iterations, we have

∥yJ − y∗t (x)∥ ≤ ϵs.

Denote κs = Lg̃t,ms
/µg̃t, then κs has a upper bound estimate κ = Lg̃t,M/µg̃t, where µg̃t is from

Proposition 4.1, Lg̃t,M can be computed by replacing m in (4.3) with M from Corollary 4.1, and
Lg̃t,ms

can be computed by replacing m in (4.3) with ms from the Step 2 of Algorithm 2.

The proof follows the standard proof of the convergence of the accelerated proximal/projected
gradient descent (see Nesterov (2012)) since the lower objective g̃t is both Lg̃t,ms

Lipschitz smooth
and µg̃t strongly convex in the region Yms(x). By Corollary 4.1, ms has a lower bound estimate M ,
so Lg̃t,ms

has a upper bound estimate Lg̃t,M , which means κs has a upper bound estimate Lg̃t,M/µg̃t ,
denoted as κ. The proof is complete.

Remark 4.4. We remark that the feasibility check (Step 1 of Algorithm 2) is achievable by the
following scheme: let us assume that a solver is available, which is capable of computing the projection
operation of a point onto a non-empty convex set. To determine whether the set {y : hi(x, y) ≤
−d, i = 1, ..., k} is non-empty, we can employ the solver to project any arbitrary point onto the set.
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If this solver can return a solution, then we confirm that the set {y : hi(x, y) ≤ −d, i = 1, ..., k}
is indeed non-empty. Conversely, if the solver can not return a solution, then the set is empty.
Therefore we believe that the feasibility check step is no more complicated than a projection onto a
convex set.

The upper-level problem is more challenging than the lower-level problem. This difficulty arises
because solving the lower-level problem requires only the value ds at a point xs, where there exists a
y such that hi(xs, y) ≤ −ds for any i. In contrast, designing the stepsize for the upper-level problem
necessitates the global value D, where for any x, there exists a y such that hi(x, y) ≤ −D for any i.
Specifically, for lower-level problem, we only need the value ds at the point xs and then estimate
the value of ms in Step 2 of Algorithm 2, so we can obtain the optimal value within the shrunk
feasible set {y : hi(x, y) ≤ −ms, i = 1, ..., k}. However, when addressing the upper-level problem,
we need to estimate the Lipschitz constant of hypergradient, which requires the global upper bound
of hi(x, y

∗
t (x)), as stated in Corollary 4.1 as −M . To obtain the −M , the global value D is necessary

in view of Corollary 4.1. Yet, we do not know the value of D a priori.
Our approach begins with determining the value of ds at a specific reference point xs. Leveraging

the Lipschitz continuity assumption of h, it is clear that for any x in the ball Bxs (ds/2Lh) there
exists a point y such that hi(x, y) ≤ −ds/2 for any i. Therefore we can estimate the local upper
bound of hi(x, y

∗
t (x)) within the ball Bxs (ds/2Lh). This enables us to design an appropriate stepsize

for the upper-level problem. Furthermore, we constrain the stepsize to ensure that next reference
point xs+1 remains within this ball. The process is shown in Figure 1 and 2.

xs−1

ds−1/(2Lh)

Figure 1: ds−1 is an output of Algorithm 2,
which indicates that there exists one point
y0 such that hi(xs−1, y0) ≤ −ds−1 for any
i. By Lipschitz continuity of hi(x, y), when
x is in the ball Bxs−1(ds−1/(2Lh)), we have
hi(x, y0) ≤ −ds−1/2 for any i. In view of
Theorem 4.1, we have a negative upper bound
of hi(x, y

∗
t (x)) for any i ∈ {1, .., k} and x in

the ball Bxs−1(ds−1/(2Lh)).

xs−1

xs

ds−1/(2Lh)

ds/(2Lh)

xs+1

Figure 2: Utilizing the negative upper bound
of hi(x, y

∗
t (x)) in the ball Bxs−1(ds−1/(2Lh))

obtained from left figure, we estimate the
Lipschitz smoothness constant of ϕ̃t(x) in
this ball, and design the stepsize ηs−1. The
design of ηs−1 ensures that xs is still in
Bxs−1(ds−1/(2Lh)). We update and get xs by
Step 2 of Algorithm 1. We also get the ball
Bxs(ds/(2Lh)) by repeating the argument in
the left figure, then update to the next point
xs+1 by repeating the above process.

We first establish the following lemma on the Lipschitz properties of the lower-level Hessian,
whose proof can be found in Appendix F.4.

Lemma 4.1. Suppose the assumptions in Theorem 4.1 are satisfied. If hi(x1, y1) ≤ −m, hi(x2, y2) ≤
−m for any i, then ∥∇2

yy g̃t(x1, y1) − ∇2
yy g̃t(x2, y2)∥ ≤ Lg̃t,m∥(x1, y1) − (x2, y2)∥; ∥∇2

xy g̃t(x1, y1) −
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∇2
xy g̃t(x2, y2)∥ ≤ Lg̃t,m∥(x1, y1)− (x2, y2)∥, where

Lg̃t,m = Lg + tk

(
Lh

m
+

LhLh

m2
+

2L3
h

m3
+

2LhLh

m2

)
. (4.4)

The following lemma informs us that when we know, for a fixed x, the values of the constraints
hi(x, y) for some interior point y, we can evaluate the Lipschitz smoothness constant of ϕ̃t within a
spherical neighborhood Bxs (ds/2Lh) of x which can help us to design the stepsize. The proof is
available in Appendix F.5.

Lemma 4.2. Suppose the assumptions in Theorem 4.1 are satisfied. For any fixed x, if there exists
y ∈ Y(x) such that hi(x, y) ≤ −d for any i ∈ {1, ..., k}, then

1. For any x+∆x, where ∥∆x∥ ≤ d
2Lh

, the following inequality holds: hi(x+∆x, y∗t (x+∆x)) ≤
−mloc, where mloc is a positive constant which can be computed through replacing d by d/2 in
(4.2);

2. The hyperfunction ϕ̃t(x) is local L
loc
ϕ̃t
-Lipschitz smooth. That is, the following holds for any

x1, x2 satisfies max{∥x1 − x∥, ∥x2 − x∥} ≤ d
2Lh

:

∥∇xϕ̃t(x1)−∇xϕ̃t(x2)∥ ≤ L
loc
ϕ̃t
∥x1 − x2∥.

L
loc
ϕ̃t

can be computed as follows:

L
loc
ϕ̃t

=

(
Lf + Lf

1

µg̃t

(Lg +
tkLh

mloc
+

tkL2
h

(mloc)2
) + Lf

Lg̃t,mloc

(µg̃t)
2
(Lg +

tkLh

mloc
+

tkL2
h

(mloc)2
) + Lf

Lg̃t,mloc

µg̃t

)

×
(
1 +

1

µg̃t

(Lg +
tkLh

mloc
+

tkL2
h

(mloc)2
)

)
,

where Lg̃t,mloc is from (4.4) by replacing m with mloc, and µg̃t is from Proposition 4.1.

Replacing d in Lemma 4.2 with the current iteration ds from the output of Algorithm 2, we have

an estimate of local Lipschitz smoothness constant L
ϕ̃t,s

:= L
loc
ϕ̃t

in the ball Bxs(ds/(2Lh)). Now we

are able to establish the following lemma on the upper bound of L
ϕ̃t,s

, whose proof is provided in
Appendix F.6:

Lemma 4.3. Suppose the assumptions in Theorem 4.1 are satisfied. The estimate L
ϕ̃t,s

has a upper

bound L
ϕ̃t

= O(1/t4).

Remark 4.5. Although L
ϕ̃t,s

is bounded by L
ϕ̃t
, the constant L

ϕ̃t
is not computable if we do not

know the constant D from Remark 4.3, thus this cannot help us design the stepsize. L
ϕ̃t,s

can make
sure that the stepsize ηs has a lower bound, a fact which is essential for our main convergence result
Theorem 4.3 to hold.

Now that in practice we are not able to calculate the hypergradient ∇xϕ̃t(x) exactly, and in
Algorithm 1 we approximate the hypergradient by ∇̂xϕ̃t(x). We thus need the following lemma on
the approximation error of the hypergradient, whose proof can be found in Appendix F.7.
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Lemma 4.4. Suppose the assumptions in Theorem 4.1 are satisfied. Let xs be the reference point,
and ŷs is from the output of Algorithm 2. Define the following approximate gradient

∇̂xϕ̃t(xs) = ∇xf(xs, ŷs)−∇2
xy g̃t(xs, ŷs)(∇2

yy g̃t(xs, ŷs))
−1∇yf(xs, ŷs). (4.5)

Then the gradient approximation error can be upper bounded as ∥∇xϕ̃t(xs)− ∇̂xϕ̃t(xs)∥ ≤ ϵsL
′
ϕ̃t,ms

,
where ms is from the output of Algorithm 2 and

L
′
ϕ̃t,ms

= Lf + Lf
1

µg̃t

(
Lg +

tkLh
ms

+
tkL2

h
m2

s

)
+ Lf

(
1

µg̃t

)2
Lg̃t,ms

(
Lg +

tkLh
ms

+
tkL2

h
m2

s

)
+ Lf

1
µg̃t

Lg̃t,ms
,

(4.6)

where Lg̃t,ms
is from Lemma 4.1 which can be computed by replacing m with ms.

Finally, we state the convergence of the upper-level problem as follows.

Theorem 4.3. Suppose Assumption 4.3(1)(2)(3) and Assumption 4.4 all hold, and either Assump-
tion 4.1 or Assumption 4.2 holds. We recall and define the following terms:

• L
ϕ̃t,s

is computed by replacing d in Lemma 4.2 with ds from the output of Algorithm 2;

• ∇̂xϕ̃t(xs) is from (4.5);

• L
′
ϕ̃t,ms

is from (4.6);

• M is from Corollary 4.1;

• µg̃t is from Proposition 4.1;

• L
ϕ̃t

is from Lemma 4.3;

• D is from Remark 4.3;

• ds is from the output of Algorithm 2;

• ζ = min

1, D
4Lh

× 1

Lf+
Lf
µg̃t

(
Lg+tk

Lh
M

+tk
L2
h

M2

) , 1
L
ϕ̃t

.

We set the stepsize ηs as

ηs = min

{
1,

ds

2Lh∥∇̂xϕ̃t(xs)∥
,

1

L
ϕ̃t,s

}
, (4.7)

and set the stop criterion ϵs = ϵ/(4L
′
ϕ̃t,ms

) for the inner loop. Then the the sequence {xs} generated
by Algorithm 1 satisfies

min
s=0,...,S−1

1

ηs
∥xs − projX (xs − ηs∇xϕ̃t(xs))∥ ≤ ϵ

within Õ(1/(ζϵ2)) number of iterations.

The proof of Theorem 4.3 is in Appendix F.8.
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Remark 4.6. In terms of the dependency on ϵ, Theorem 4.3 achieves the rate Õ(ϵ−2). However, if
higher order (3rd order or even higher for the lower-level objective) smoothness is assumed for both
lower- and upper-level objectives, the convergence could be improved to O(ϵ−7/4) using the techniques
proposed in Wang et al. (2024) for the special case of bilevel optimization, namely the minimax
saddle point problems. We refer to Wang et al. (2024) and omit the details to keep the conciseness
of this work.

In terms of the dependency on t, from Lemma 4.3 and Theorem 4.3, we can see that ζ = O(t4)
with respect to t. For the inner loop, we have that the number of iterations is Õ(t−0.5) (more details
see Appendix F.9). Therefore, the total number of iterations is Õ(t−4.5). Moreover, under the strong
convex setting, if we already know the upper bounds of some provably bounded terms a priori, then
by adjusting the stepsize, the number of iterations with respect to t can be reduced to Õ(t−1.5) (for
details, see Appendix C).

In the next section, we discuss how to recover a stationary point for the original lower-level
constrained bilevel problem (1.3).

4.3 Asymptotic Convergence to the Original Problem

The convergence result in Theorem 4.3 indicates a non-asymptotic rate of convergence is achievable
for solving the barrier reformulated problem (1.4). Based on our previous discussion, achieving non-
asymptotic convergence toward the original problem (1.3) is intractable since the hypergradient of
the original problem (1.3) can be non-differentiable or even discontinuous (Example 3.1). Therefore
we inspect the asymptotic convergence toward the original problem when the SCSC assumption is
satisfied (which will make the original problem differentiable). In particular, we consider Algorithm
3 listed below, where we iteratively shrink the barrier parameter t in our formulation (1.4) and
utilize Algorithm 1 for each t.

Algorithm 3: Hypergradient Based Bilevel Barrier Method for (1.3)

Step 0: Initialization. Given an initial point x0, t0 = 1, the accuracy level ϵ0.
for i = 0, 1, 2, ... do
Step 1: Solve the problem with current t. Call Algorithm 1 with initial point xi,
accuracy ϵ = ϵi and t = ti and other parameters specified as in Theorem 4.3, obtaining
the output xi+1

Step 2: Decrease the parameter. Set ϵi+1 = ϵi/2 and ti+1 = ti/2

Algorithm 3 is a direct application of Algorithm 1 with shrinking t, which is analogous to
the classical path-following scheme. Different from the path-following scheme, we do not have
self-concordant barriers, thus we have to solve each of the sub-step to a certain precision for each fix
t. We have the following result for the asymptotic convergence of Algorithm 3.

Theorem 4.4. Assume the same assumptions as Theorem 4.3 and consider the output sequence
{xi} of Algorithm 3. Suppose in addition Assumption 4.3(4) holds. If the limit point x∗ of {xi} ⊂ X
is SCSC points of original BLO problem (1.3), then x∗ is the stationary point of (1.3).

The proof of Theorem 4.4 is available in Section F.10.
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5 Numerical Experiments

In this section, we conduct numerical experiments to verify the effectiveness of the proposed
Algorithm 1. Our experiments are conducted on a single PC with Intel Core 12400F CPU and
16GB of RAM. Our code is available at https://github.com/jxxxxxxt/bilevel_ipm.

5.1 Generated Strongly Convex Problem

In this experiment, we evaluate the performance of our proposed BFBM algorithm using a class of
randomly generated problems. Both the upper-level and lower-level objective functions are designed
to be strongly convex, and the constraints are all linear in y. The problem template is given as
follows:

min
x,y

f(x, y) =
1

2

(
x
y

)⊤
A

(
x
y

)
+ b⊤

(
x
y

)
s.t. y ∈ argmin

y
g(x, y) =

1

2
y⊤Cy + d⊤y + x⊤Dy

s.t. x⊤Eiy ≤ ei for i = 1, . . . , k, −1 ≤ yi ≤ 1 for i = 1, . . . , n,

where x ∈ Rn represents the upper-level decision variables, y ∈ Rn represents the lower-level decision
variables, A ∈ R2n×2n and C ∈ Rn×n are symmetric positive definite matrices, b ∈ R2n and d ∈ Rn

are vectors, D ∈ Rn×n and Ei ∈ Rn×n are matrices, ei ∈ R+ are positive numbers for i = 1, .., k.
All these are randomly generated (see Appendix A).

Experimental Setup and Algorithm Comparison In this experiment, we set the problem
dimension to n = 60 and the number of primary constraints to k = 20. We generated ten problem
instances using seeds ranging from 0 to 9 to ensure variability and reproducibility. We allocated
a two-minute time budget to each of the three algorithms—BFBM (Our proposed Algorithm),
BSG (Giovannelli et al., 2021), and BLOCC (Jiang et al., 2024)—and evaluated them under two
stepsize strategies: constant and diminishing. (For details about the parameters, refer to Appendix
A.)

After the allotted time, the quality of the obtained solutions (x, y) was evaluated based on four
metrics: the upper-level function value f(x, y), the hyperfunction value f(x, yopt) where yopt is the
optimal solution of the lower-level problem given x, the lower-level optimality gap g(x, y)−g(x, yopt),
and the total constraint violation defined as

k∑
i=1

max(0, xE
(1)
i y − e

(1)
i ) +

n∑
i=1

max(0, yi − 1) +
n∑

i=1

max(0,−yi − 1),

which measures the overall lower-level feasibility of the solution. A higher total constraint violation
indicates that the obtained solution deviates more from the feasible region of the lower-level problem.
The total constraint violation equals zero if and only if the obtained solution is feasible in the
lower-level problem. For each algorithm, the solution with the best hyperfunction value across both
stepsize strategies was selected for comparison.

Table 2 compares the solutions obtained by the three algorithms across ten different seeds
under a two-minute computational budget per run. Each solution is evaluated in terms of both its
hyperfunction value f(x, yopt) and its upper-level function value f(x, y). As shown in the table, our
proposed algorithm BFBM achieves the lowest hyperfunction value among the three algorithms in
five out of the ten seeds.
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Table 2: Evaluate solution qualities using upper-level metrics: Hyperfunction Value (Upper-Level
Function Value)

Seed BSG BLOCC BFBM

0 1.1138 (1.0546) 2.6983 (1.3556) 1.5372 (1.2014)
1 1.1550 (1.0850) 0.9524 (0.1207) 0.1657 (-0.0186)
2 1.9700 (1.8424) 3.1455 (2.1752) 1.8765 (1.6664)
3 2.0662 (2.1330) 2.7364 (2.5312) 2.1675 (1.9531)
4 0.6963 (17.6067) 1.4438 (1.4192) 0.8288 (0.6353)
5 0.7596 (0.7157) 0.8560 (1.4241) 0.6675 (0.3143)
6 1.0723 (18.5577) 1.2513 (0.2774) 2.2743 (1.8548)
7 0.6451 (1.0544) 0.3920 (0.5784) 2.8073 (2.2171)
8 17.2746 (146.8528) 2.8086 (1.1682) 2.2652 (2.0724)
9 8.4697 (15.3909) 5.8981 (5.9888) 1.5066 (1.0964)

Table 3: Evaluate solution qualities using lower-level metrics: Total Constraint Violation (Optimality
Gap)

Seed BSG BLOCC BFBM

0 0.0000(0.0289) 0.0000(0.1354) 0.0000(0.0515)
1 0.0084(0.0218) 0.0000(0.2183) 0.0000(0.0478)
2 0.0000(0.0425) 0.0000(0.1248) 0.0000(0.0643)
3 0.0100(-0.0204) 0.0000(0.0863) 0.0000(0.0443)
4 0.0122(-0.0392) 0.0066(0.0285) 0.0000(0.0527)
5 0.0000(0.0224) 0.0192(0.0099) 0.0000(0.0530)
6 0.0140(-0.0317) 0.0000(0.1670) 0.0000(0.0718)
7 0.0136(-0.0320) 0.0050(0.0171) 0.0000(0.0562)
8 1.2690(-1.0111) 0.0000(0.7070) 0.0000(0.0717)
9 0.0169(-0.0059) 0.0000(0.1192) 0.0000(0.0510)

As shown in Table 3, we compare the solutions obtained by the three algorithms across ten
different random seeds in terms of their optimality gaps and total violations. It is crucial to consider
only solutions with a total violation of zero as feasible; therefore, the comparison of optimality gaps
is meaningful exclusively for these feasible solutions.

Our proposed algorithm, BFBM, consistently achieves a total violation of zero for all ten seeds,
ensuring the feasibility of its solutions. Compared to BLOCC, BFBM achieves lower total constraint
violation and optimality gap. Relative to BSG, although both exhibit small optimality gaps, BFBM
maintains a lower total constraint violation. This stability underscores the reliability and high
quality of the solutions generated by the BFBM algorithm.

5.2 Price Setting Problem

In this experiment, we assess the performance of our proposed BFBM algorithm in the context
of a price setting problem (see Section 2). In this problem, both the upper-level and lower-level
objective functions are linear, and the constraints are all linear in y. Here we consider the case that
the lower-level problems are all uncoupled, i.e. they do not depend on T . All the matrices and
vectors in (2.1) are randomly generated (see Appendix A).
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Experimental Setup and Algorithm Comparison In this experiment, we set the problem
dimension to n = 60 and the number of primary constraints to k = 20. We generated ten problem
instances using seeds ranging from 0 to 9 to ensure variability and reproducibility. We allocated
a four-minute time budget to each of the three algorithms—BFBM (Our proposed Algorithm),
BSG (Giovannelli et al., 2021), and BLOCC (Jiang et al., 2024)—and evaluated them under
diminishing stepsize strategy. (For details about the parameters, refer to Appendix A.)

Table 4: Hyperfunction (Evaluate solution qualities using upper-level metrics: Hyperfunction Value
(Upper-Level Function Value))

Seed BSG BLOCC BFBM

0 -0.1279 (-0.0710) -0.0046 (-0.0047) -0.2825 (-0.2750)
1 -0.1337 (-0.0405) -0.0034 (-0.0034) -0.2455 (-0.2382)
2 -0.1291 (-0.1417) -0.0000 (0.0000) -0.3629 (-0.3552)
3 -0.0509 (-0.0112) -0.0000 (0.0000) -0.2950 (-0.2868)
4 -0.0559 (-0.1086) -0.0059 (-0.0060) -0.3034 (-0.2888)
5 -0.0499 (-0.0612) -0.0000 (0.0000) -0.2992 (-0.2891)
6 -0.0045 (-0.0445) -0.0044 (-0.0043) -0.1590 (-0.1506)
7 0.0000 (0.0000) -0.0000 (0.0000) -0.3070 (-0.2945)
8 -0.0314 (-0.1053) -0.0000 (0.0000) -0.1790 (-0.1741)
9 -0.0748 (-0.0603) -0.0100 (-0.0095) -0.3348 (-0.3248)

Table 5: Evaluate solution qualities using lower-level metrics: Total Constraint Violation (Optimality
Gap)

Seed BSG BLOCC BFBM

0 2.1335 (1.8119) 0.0676 (0.0088) 0.0000 (0.0120)
1 4.4754 (-1.0703) 0.0618 (0.0312) 0.0000 (0.0119)
2 3.0165 (0.0653) 0.1464 (0.0024) 0.0000 (0.0120)
3 4.6530 (-0.8170) 0.0875 (-0.0049) 0.0000 (0.0119)
4 3.4429 (-1.0803) 0.1834 (-0.0523) 0.0000 (0.0120)
5 3.7905 (-0.2300) 0.1748 (-0.0246) 0.0000 (0.0119)
6 3.7567 (-1.3199) 0.0917 (0.0293) 0.0000 (0.0120)
7 6.6517 (-2.5038) 0.1058 (0.0149) 0.0000 (0.0120)
8 2.5576 (0.0622) 0.2153 (-0.0415) 0.0000 (0.0120)
9 3.4771 (0.5839) 0.0814 (0.0316) 0.0000 (0.0120)

For the BSG and BLOCC algorithms, we conducted experiment on a regularized version of the
price setting problem. In the regularized version, a small regularization term 0.001× (∥x∥2 + ∥y∥2)
was added to the lower-level objective function g(T, x, y), thereby ensuring that it is strongly convex.
From Table 4 and 5, it is evident that for the price-setting problem, the solution obtained by our
BFBM algorithm is optimal in terms of hyperfunction quality. In addition, while maintaining strict
feasibility (i.e., the total constraint violation is zero), the optimality gap remains consistently low,
demonstrating the robustness and efficiency of our method when lower-level problem is a linear
program.
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6 Conclusion

In this paper, we proposed a barrier function reformulation approach for BLO optimization problems
involving lower-level problems with coupled constraints, i.e. the constraints depend on both upper-
and lower-level variables. We focused on two specific cases: one where the lower-level objective is
strongly convex with convex constraints concerning the lower-level variable, and another where the
lower-level problem is a linear program.

By developing a series of new techniques, we demonstrated that the barrier reformulated problem
converges to the original bilevel problem in terms of both hyperfunction value and hypergradient.
To solve the reformulated problem whose hyperfunction and lower-level problems are not Lipschitz
smooth, we designed two effective algorithms: one that guarantees non-asymptotic convergence for
the barrier reformulated problem for a fixed t, and the other that converges asymptotically to a
stationary point of the original problem if this point is an SCSC point (see Definition 3.1). Notably,
this is the first work providing convergence guarantees for BLO optimization problems where the
lower-level problem is a linear program. For the general case that g(x, y) and hi(x, y) are all convex
in y, we have the convergence for hyperfunction value, and Algorithm 1 still works in this case (see
Appendix D).

We conducted experiments on strongly convex and linear lower-level problems with linear
inequality constraints. Our algorithm is the only one that ensure the solution is feasible for lower-
level problem. For the price-setting problem, it was the most effective algorithm, demonstrating its
robustness and effectiveness for bilevel optimization.

Our work establishes a unified framework that operates under minimal assumptions, significantly
advancing the methodology in bilevel optimization. Future efforts will focus on extending our
algorithms to scenarios with stochastic upper- and lower-level objective functions.
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Appendix

A Details of Experiments

A.1 Generated Strongly Convex Problem

Data Generation Process The problem data is generated using the following procedure:

1. Random Seed Initialization: A fixed random seed is set using np.random.seed(seed) to
guarantee reproducibility of the results across different runs.

2. Matrix Generation:

• Matrix A: Generated as a symmetric positive definite matrix:

A = 0.5× (Ainit ×A⊤
init) + I2n.

Here, each entry of the initial random matrix Ainit is drawn from a standard normal
distribution N (0, 1);

• Matrix C: Generated as a symmetric positive definite matrix:

C = 0.5× (Cinit × C⊤
init) + In.

Each entry of the initial random matrix Cinit is drawn from a standard normal distribution
N (0, 1);

• Matrix D: Generated as a random matrix:

D = randn(n, n).

Each entry of D is independently drawn from a standard normal distribution N (0, 1).

3. Vector Generation:

• Vector b: Generated as a random vector:

b = randn(2n).

Each entry of b is drawn from a normal distribution N (0, 1) and then scaled by a factor
of 10 to increase the magnitude of the coefficients;

• Vector d: Generated as a random vector:

d = randn(n).

Each entry of d is drawn from a normal distribution N (0, 1) and scaled by a factor of 10.

4. Constraints Generation:

• Coupled Constraints: A total of k coupled linear constraints are imposed on the
lower-level variables:

x⊤Eiy ≤ ei, for i = 1, . . . , k.

– Each matrix Ei ∈ Rn×n is generated with entries drawn independently from a
standard normal distribution N (0, 1);

– Each scalar ei ∈ R is drawn uniformly from the interval [0, 1], i.e., ei ∼ U(0, 1);
• Box Constraints: Simple Box constraints are imposed to make sure the lower-level
feasible set is compact.

−1 ≤ y ≤ 1.
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Implementation Details

1. BSG Algorithm Giovannelli et al. (2021):

• For inner loop, we use a max-min solver (Algorithm 2 in Jiang et al. (2024)) to obtain
the lower-level optimal solution y and Lagrange multiplier zI ;

• We choose the initial point xinit = 0, yinit = 0, zI,init = 0; For the main loop, the stepsize
is set to αk = 2 × 10−6 or 5 × 10−5/

√
k + 1; For the max-min solver, the stepsizes for

the first and second loops are set to η1 = 10−3 and η2 = 0.02 respectively; The stopping
criteria for the first and second loops in the max-min solver are ϵ1 = 0.01 and ϵ2 = 0.01.

2. BLOCC Algorithm Jiang et al. (2024):

• We choose the initial point xinit = 0, yg,init = 0, yF,init = 0, µg,init = 0, µF,init = 0, and
the penalty coefficient γ = 10; For the main loop, the stepsize is set to αk = 2× 10−5 or
10−3/

√
k + 1; For both max-min solvers, the stepsizes for the first and second loops are

set to η1 = 10−3 and η2 = 0.5 respectively; The stopping criteria for the first and second
loops in both max-min solvers are ϵ1 = 0.05 and ϵ2 = 0.05.

3. BFBM Algorithm (Our proposed Algorithm):

• For inner loop we use Netwon method;

• We set t = 0.01, and M = 0.1, which means we shrink the lower-level feasible set to
{y|hi(x, y) ≤ −10−3 for i = 1, ..., k};

• We choose the initial point xinit = 0, yinit = 0; For the main loop, the stepsize is set to
αk = 2 × 10−5 or 5 × 10−4/

√
k + 1; For inner loop the stepsizes is set to η = 0.1; The

stopping criteria for inner loop is ϵy = 0.01.

A.2 Price Setting Problem

Data Generation Process The problem data is generated using the following procedure:

1. Random Seed Initialization: A fixed random seed is set using np.random.seed(seed) to
guarantee reproducibility of the results across different runs.

2. Matrix Generation:

• Matrix A1 and A2: Generated as a matrix with entries drawn from a normal distribution
N (0, 1) and then made non-negative by taking the absolute value. Additionally, a
correction is applied: if all values in a row of A1 or A2 are less than 1, we set the
maximum value in that row to be 1. This ensures that each city has at least one road
leading to it. Finally, we multiply each element of A2 by 0.2 to simulate the significantly
lower carrying capacity of untaxed roads compared to taxed roads.

3. Vector Generation:

• Vector b, c1 and c2: Generated as random vectors, with each entry drawn from N (0, 1),
and then made non-negative by taking the absolute value.
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Implementation Details

1. BSG Algorithm Giovannelli et al. (2021):

• For inner loop, we use a max-min solver (Algorithm 2 in Jiang et al. (2024)) to obtain
the lower-level optimal solution y and Lagrange multiplier zI ;

• We choose the initial point Tinit = 0, xinit = 0, yinit = 0, zI,init = 0; For the main loop,
the stepsize is set to αk = 0.01/

√
k + 1; For the max-min solver, the stepsizes for the

first and second loops are set to η1 = 2−5 and η2 = 30 respectively; The stopping criteria
for the first and second loops in the max-min solver are ϵ1 = 5× 10−4 and ϵ2 = 1.

2. BLOCC Algorithm Jiang et al. (2024):

• We choose the initial point Tinit = 0, xg,init = 0, yg,init = 0, xF,init = 0, yF,init = 0,
µg,init = 0, µF,init = 0, and the penalty coefficient γ = 2; For the main loop, the stepsize
is set to αk = 0.01/

√
k + 1; For both max-min solvers, the stepsizes for the first and

second loops are set to η1 = 2× 10−5 and η2 = 30 respectively; The stopping criteria for
the first and second loops in both max-min solvers are ϵ1 = 10−4 and ϵ2 = 1.

3. BFBM Algorithm (Our proposed Algorithm):

• For inner loop we use Newton method;

• We set t = 10−4, and M = 0.1, which means we shrink the lower-level feasible set to
{y|hi(x, y) ≤ −10−5 for i = 1, ..., k};

• We choose the initial point xinit = 0, yinit = 0; For the main loop, the stepsize is set to
αk = 0.02/

√
k + 1; For inner loop the stepsizes is set to η = 0.01; The stopping criteria

for inner loop is ϵxy = 5× 10−4.

B Preliminaries

B.1 Notations

• Denote [λ1(x, y), ..., λk(x, y)] := argmaxλ g(x, y)+
∑k

i=1 λihi(x, y) be the Lagrange multipliers
at point (x, y), where y ∈ y∗(x). If y∗(x) is unique, or λi(x, y) is independent of the choice of
y ∈ y∗(x), for simplicity, we write λi(x, y) = λi(x), and, under this case, define I∗(x) := {i :
λi(x) > 0} be the set of index that corresponding multiplier is positive;

• Ym(x) := {y : hi(x, y) ≤ −m, i = 1, ..., k} is the shrinked feasible set;

• ŷs is approximation of y∗(xs) from the output of Algorithm 2;

• D introduced in Remark 4.3 is a constant that for any x there exists y satisfies hi(x, y) ≤ −D
for any i;

• µg̃t introduced in Proposition 4.1 is the strongly convexity constant of g̃t(x, y) in y;

• M defined in Corollary 4.1 is the positive lower bound of −hi(x, y
∗(x)) and −hi(xs, ŷs);

• Lg̃t,m introduced in Proposition 4.2 is the Lipschitz smoothness constant of g̃t(x, y) in y in
the set Ym(x);
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• Lg̃t,m introduced in Proposition 4.1 is the Lipschitz constant of Hessian for g̃t(x, y) in the set
Ym(x);

• κs utilized in Theorem 4.2 is the condition number of the inner loop at the s-th step of the
outer loop;

• L
ϕ̃t,s

studied in Lemma 4.3 is the estimate of local Lipschitz smoothness constant at the s-th
step of the outer loop;

• L
ϕ̃t

introduced in Lemma 4.3 is the global upper bound of L
ϕ̃t,s

;

• ∇̂xϕ̃t(xs) := ∇xf(x, y) + ∇2
xy g̃t(xs, ŷs)(∇2

yy g̃t(xs, ŷs))
−1∇yf(xs, ŷs) is the approximation of

the hypergradient ∇xϕ̃t(xs) at the s-th step of the outer loop;

• L
′
ϕ̃t,ms

studied in Lemma 4.4 is the approximation error between ∇̂xϕ̃t(xs) and ∇xϕ̃t(xs), i.e.

∥∇̂xϕ̃t(xs)−∇xϕ̃t(xs)∥ ≤ L
′
ϕ̃t,ms

∥y∗(xs)− ŷs∥;

• L
′
ϕ̃t

given in Lemma F.1 is the upper bound of L
′
ϕ̃t,ms

.

B.2 Some basic lemmas

Lemma B.1. Suppose Assumption 3.1(1), 3.1(2) and Assumption 3.2 hold, then

∥y∗t (x)− y∗(x)∥ ≤

√
2

µg
kt. (B.1)

Proof. Since g(x, y) is µg-strongly convex in y, we have

g(x, y) ≥ g(x, y∗(x)) +∇yg(x, y
∗(x))(y − y∗(x)) +

µg

2
∥y − y∗(x)∥2 . (B.2)

By the optimal condition, ∇yg(x, y
∗(x))(y − y∗(x)) ≥ 0 for any feasible point y. Replacing y by

y∗t (x) in Equation (B.2), we get

µg

2
∥y∗t (x)− y∗(x)∥2 ≤ g(x, y∗t (x))− g(x, y∗(x))−∇yg(x, y

∗(x))(y∗t (x)− y∗(x))

≤ g(x, y∗t (x))− g(x, y∗(x)).

From lemma 3.1, we know g(x, y∗t (x))− g(x, y∗(x)) ≤ kt, which implies

∥y∗t (x)− y∗(x)∥ ≤

√
2

µg
kt. (B.3)

Lemma B.2. Suppose Assumption 3.1 holds, and either Assumption 3.3 or 3.2 holds, then y∗t (x)
continuously depends on t for any fixed x.
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Proof. Denote Gx(t, y) = gt(x, y). We fix a x. Note that

∇y(∇yGx(t, y)) = ∇2
yy g̃t(x, y) ≻ 0

for any t and y, and ∇yGx(t, y
∗
t (x)) = 0. By implicit function theorem, we can find a neighborhood

Ut × Uy∗t (x)
of (t, y∗t (x)) such that there exists a continuous function Y (t) satisfies ∇yGx(t, y) = 0 if

and only if y = Y (t). Since G is strongly convex in y, ∇yGx(t, y) = 0 means y = y∗t (x). Therefore,
by the uniqueness of the optimal solution, locally we have y∗t (x) = Y (t) continuously depending
on t. As we already know y∗t (x) is a function of t, we conclude that globally, i.e. for any t, y∗t (x)
continuously depends on t.

Lemma B.3. Suppose Assumption 3.1 holds, and either Assumption 3.2 or Assumption 3.3 holds,
then the Lagrange multiplier λi(x) is continuous for any i. Furthermor, since X is compact, λi(x)
has upper bound independent of i and x.

Proof. When g(x, y) is strongly convex in y and hi(x, y) is convex in y, then y∗(x) is unique. If
λi(x) is not continuous for some point x0 and some index i0, then we can find a sequence {xj}∞j=1

such that limj→∞ xj = x0, and limj→∞ λi0(xj) ̸= λi0(x0), or does not exist.

Case 1: If limj→∞ λi0(xj) does not exist. We consider separately the cases where λi0(xj) is
uniformly bounded and where there exists an unbounded subsequence.

If {λi0(xj)}∞j=1 has an unbounded subsequence, still denoted as {λi0(xj)}∞j=1, i.e. limj→∞ |λi0(xj)| =
∞, then set µ∗

j = maxi |λi(xj)|. By the unboundedness assumption, limj→∞ µ∗
j = ∞. We can choose

a sub-sequence of {xj}∞j=1, still denoted as {xj}, such that i∗ = argmaxi |λi(xj)| for some fixed
index i∗. Since |λi(xj)|/µ∗

j ≤ 1 for any i and j, we can choose a subsequence, still denoted as {xj},
such that limj→∞ λi(xj)/µ

∗
j exists for any i. Denote µi(x0) := limj→∞ λi(xj)/µ

∗
j . It is clear that

µi∗(x0) = 1. Replacing x with xj in the KKT condition equation

∇yg(x, y
∗(x)) +

k∑
i=1

λi(x)∇yhi(x, y
∗(x)) = 0, (B.4)

dividing by µ∗
j , and letting j approach infinity, we get

k∑
i=1

µi(x0)∇yhi(x0, y
∗(x0)) = 0. (B.5)

We will show that µi(x0) ̸= 0 means i is active at x0. If µi(x0) ̸= 0, then λi(xj) ̸= 0 except for
at most finitely many j. So the index i is active at the point xj , which implies hi(xj , y

∗(xj)) = 0.
Thus, hi(x0, y

∗(x0)) = limj→∞ hi(xj , y
∗(xj)) = 0, implying that i is active at the point x0. (B.5)

can be written as ∑
i∈I∗(x0)

µi(x0)∇yhi(x0, y
∗(x0)) = 0,

where I∗(x0) is the set of active index at x0. By LICQ assumption, ∇yhi(x0, y
∗(x0)) are linear

independent for i ∈ I∗(x0). Note that µi∗(x0) = 1 ̸= 0, this contradicts the LICQ assumption.
Therefore, we know that {λi0(xj)}∞j=1 is uniform bounded.
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Case 2: If limj→∞ λi0(xj) exists but not equals λi0(x0), we will show that this also contradicts
LICQ assumption. Case 1 demonstrates that λi(xj) has a uniform bound for any i and j. Thus, we
can choose a subsequence of {xj}∞j=1, still denoted as {xj}∞j=1, such that limj→∞ λi(xj) =: µi(x0)
exists for any i. Replacing x with xj in (B.4), and letting j approach infinity, we get

∇yg(x0, y
∗(x0)) +

k∑
i=1

µi(x0)∇yhi(x0, y
∗(x0)) = 0. (B.6)

Replacing x with x0 in the KKT condition (B.4), and subtracting (B.6), we obtain

k∑
i=1

(λi(x0)− µi(x0))∇yhi(x0, y
∗(x0)) = 0.

If λi(x0)− µi(x0) ̸= 0, then either λi(x0) = 0 or λi(x0) ̸= 0. λi(x0) = 0 means µi(x0) ̸= 0, which
implies i is active at point x0 similar as the argument in Case 1. λi(x0) ̸= 0 means that i is
active at point x0. Therefore, λi(x0)− µi(x0) ̸= 0 always means is active at point x0. Note that
λi0(x0)− µi0(x0) ̸= 0, which contradicts the LICQ assumption.

When g(x, y) and hi(x, y) are linear in y for any i, then by Remark 3.2, we know that the
multipliers λi(x) are well-defined in the sense that is independent of y ∈ y∗(x). We can also denote
∇yg(x, y) as w(x), and ∇yhi(x, y

∗(x)) as vi(x) since ∇yg(x, y) and ∇yhi(x, y) is independent of y.
Then the proof is the same as the strongly convex case.

C Improved Convergence Rate

In this section, we will demonstrate how to modify the choice of stepsize so that the convergence rate
of Algorithm 1 with respect to t can be improved to Õ(t−1.5) under strongly convex case. However,
it should be noted that we need to utilize the upper bounds of certain terms. We will prove that
these terms are indeed bounded, but these bounds are not computable in practice.

Specifically, in Lemma 4.2, when estimating the local Lipschitz constant, we frequently evaluate
the term ∇xy g̃t(x, y)(∇yy g̃t(x, y))

−1. For the upper bound estimation of (∇yy g̃t(x, y))
−1, we directly

employ the strongly convexity constant of ∇yy g̃t(x, y) in y from Proposition 4.1. However, it is
important to note that, under strongly convex case, when ∇xy g̃t(x, y) explodes, which is because
h approaches zero, ∇yy g̃t(x, y) also explodes. Therefore, using the strong convexity of ∇yy g̃t(x, y)
for the upper bound estimation of (∇yy g̃t(x, y))

−1 results in significant losses. This leads to an
underestimate of the dependence of ∇xy g̃t(x, y)(∇yy g̃t(x, y))

−1 on t.
We assume that all values of t are less than or equal to 1. This assumption is justified, as in

practical applications, we often choose a very small t. To improve the estimate, we establish the
following result:

Lemma C.1. Suppose Assumption 4.3, Assumption 4.4, and Assumption 4.1 hold, i.e. under the
strongly convex setting. Then for any 0 < t ≤ 1 and x ∈ X , the following holds

∥∇xy
∗
t (x)∥ = ∥(∇yy g̃t(x, y

∗
t (x)))

−1∇yxg̃t(x, y
∗
t (x))∥ ≤ J1

for some constant J1 > 0.

The proof is provided in Section F.11. In addition, we also need the following technical results:
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Lemma C.2. Suppose Assumptions in Lemma C.1 are satisfied. Then for any 0 < t ≤ 1, any
x ∈ X and index ĵ we have ∥∥∥∥∥(∇yy g̃t(x))

−1
t∇yhĵ(x, y

∗
t (x))

(−hĵ(x, y
∗
t (x)))

2

∥∥∥∥∥ ≤ J2

for some constant J2 > 0.

Lemma C.3. Suppose Assumptions in Lemma C.1 are satisfied. There exists a constant β such that
for any 0 < t ≤ 1, x in X and y ∈ intY(x), which is the interior of Y(x), such that ∥y− y∗(x)∥ ≤ β,
we have ∥(∇yy g̃t(x, y))

−1∇yxg̃t(x, y)∥ ≤ J3, for some constant J3 > 0.

Lemma C.2 is a byproduct of Lemma C.1. We provide the proof in Section F.12. The proof of
Lemma C.3 utilizes some technical details from Lemma C.1, as discussed in Section F.13. Now we
can estimate the improved local Lipschitz constant by the boundedness we proved before.

Lemma C.4. Suppose the assumptions in Lemma C.1 are satisfied. For any 0 < t ≤ 1, and
any fixed x, if there exists y ∈ Y(x) such that hi(x, y) ≤ −d holds for any i ∈ {1, ..., k}, then the

hyperfunction ϕ̃t(x) is L
loc
ϕ̃t
-Lipschitz smooth in the ball Bx(min{ d

2Lh
, m
2Lh(1+J1)

}) which centered at

x with radius min{ d
2Lh

, m
2Lh(1+J1)

}, where J1 is from Lemma C.1 and m is computed by (4.2). That

is, the following holds for any x1, x2 satisfies max{∥x1 − x∥, ∥x2 − x∥} ≤ min{ d
2Lh

, m
2Lh(1+J1)

}:

∥∇xϕ̃t(x1)−∇xϕ̃t(x2)∥ ≤ L
loc
ϕ̃t
∥x1 − x2∥.

L
loc
ϕ̃t

can be computed as follows

L
loc
ϕ̃t

=J1

(
Lf + LfJ1 + LfJ1

(
Lg

µg
+

tkLh

µgmloc
+

tkLhLh

µg (mloc)
2 + 2

tkLhLh

µg (mloc)
2 + J2

kL2
h

mloc
+ J2

3kL2
h

mloc

)
+ Lg̃t,mlocJ1

)
.

Here mloc is a positive constant which can be computed through replacing d with d/2 in (4.2), and

µg̃t is from Lemma 4.1, J1 is from Lemma C.1, J2 is from Lemma C.2. L
loc
ϕ̃t

has a upper bound

L
ϕ̃t

= O(1t ).

The proof of Lemma C.4 can be found in Section F.14. Given our refined estimation of the
Lipschitz constant, we are now able to optimize the stepsize selection. This adjustment significantly
enhances the convergence rate with respect to t, leading to the following convergence results, whose
proof is in (F.15):

Theorem C.1. Suppose Assumption 4.3, Assumption 4.4, and Assumption 4.1 hold, i.e. under the
strongly convex setting. We recall and define the following terms:

• β is from Lemma C.3;

• L
ϕ̃t,s

is computed by replacing d in Lemma C.4 with ds from the output of Algorithm 2;

• L
′
ϕ̃t,ms

is from (4.6);

• ∇̂xϕ̃t(xs) is from (4.5);

• J1 is from Lemma C.1;
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• J3 is from Lemma C.3;

• M is from Corollary 4.1;

• D is from Remark 4.3;

• ms, ds are from the output of Algorithm 2;

• µg̃t is from Proposition 4.1;

• L
ϕ̃t

is from Lemma C.4;

• ζ = min

{
1, D

4LhLf (1+J3)
, M
4LhLf (1+J1)(1+J3)

, 1
Lϕ̃t

}
.

Assume 0 < t ≤ min{µgβ2

2k , 1}. We set the stepsize ηs as

ηs = min{1, ds
2Lh

× 1

∥∇̂xϕ̃(xs)∥
,

ms

2Lh(1 + J1)
× 1

∥∇̂xϕ̃(xs)∥
,

1

Lϕ̃t,s

}, (C.1)

and set the stop criterion ϵs = min{ϵ, β/2}/L′
ϕ̃t,ms

for the inner loop. Then the sequence {xs}
generated by Algorithm 1 satisfies

min
s=0,...,S−1

1

ηs
∥xs − projX (xs − ηs∇xϕ̃(xs))∥ ≤ ϵ

within Õ(1/(ζϵ2)) number of iterations.

Remark C.1. From Lemma C.4 and Theorem C.1, we can see that ζ = O(t) with respect to t.
Note that for inner loop we have κ = Õ(t−0.5), the total number of iterations is Õ(t−1.5).

D Convex Case

When g(x, y) is convex in y, some intrinsic difficulties arise in attempting to establish a connec-
tion between the barrier reformulation and the original problem. First, we will provide some
counterexamples to illustrate these issues.

Before the discussion, we establish the following basic assumption for convex case:

Assumption D.1. The following holds

1. f(x, y) is one time and g(x, y), hi(x, y) are two times continuously differentiable for every
x ∈ X , y ∈ Y(x), and i ∈ {1, ..., k};

2. X is convex and compact, and for any x ∈ X there exists y ∈ Y(x) such that hi(x, y) < 0 for
some i ∈ {1, 2, ..., k};

3. For any x ∈ X , Y(x) is compact, and ∥y∥ ≤ R for any y in Y(x).

When g(x, y) and hi(x, y) are all convex in y, the lower-level objective function g̃t(x) of the barrier
reformulation 1.4 may not have the unique optimal solution. Consider the following counterexample:

37



Example D.1. Define the lower-level objective function g(x, y) as follows

g(x, y) =


(y − 1)2 if 1 ≤ y ≤ 2

0 if − 1 ≤ y < 1

(y + 1)2 if − 2 ≤ y < −1,

and the lower-level constraint h(x, y) := g(x, y)− 1. Then g(x, y) and h(x, y) are both convex, and

g̃t(x, y) = g(x, y)− t log(1− g(x, y)) ≥ 0− t log(1) = 0,

The optimal solution set of the barrier reformulation is [−1, 1] for any t, which means y∗t (x) is not
unique.

Because the lower-level problem does not have a unique solution, the hypergradient cannot be
determined. Therefore, in this situation, we cannot use the implicit gradient methods for the barrier
reformulation.

When g(x, y) is convex in y, but there exist at least one strongly convex constraint hi(x, y)
in y, it is not hard to see the lower-level problem of barrier reformulation is strongly convex.
Therefore, the hyperfunction of barrier reformulation is well-defined. From this, we can explore the
connection between the hyperfunctions of the original problem and the barrier reformulation. Like
the counterexample 3.1 under the linear setting, we can still only attempt to prove the convergence
of the hyperfunction when y∗(x) is unique. Before proceeding, let us first present an assumption for
the convex case.

Assumption D.2. g(x, y) is convex in y for any x, and hi(x, y) are convex in y for any i and x.
There exists at least one strongly convex constraint hi(x, y) in y.

We give the following convergence result for the convex case:

Theorem D.1. Suppose Assumption D.1 and Assumption D.2 hold. If x satisfies that y∗(x) is
unique, then limt→0 ϕ̃t(x) = ϕ(x).

The proof can be directly obtained by optimal condition

g(x, y∗t (x))− g(x, y∗(x)) ≤ kt,

which means limt→0 g(x, y
∗
t (x)) = g(x, y∗(x)). Note that y∗(x) is unique, it not hard to see

limt→0 y
∗
t (x) = y∗(x), which implies limt→0 ϕ̃t(x) = ϕ(x).

However, establishing a relationship between the hypergradients may still be challenging, as the
hypergradient of the original problem might not be determinable through the expression:

∇xϕ(x) = ∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))(∇2

yyg(x, y
∗(x))−1∇yf(x, y

∗(x))

for any x. Let’s see the following example:

Example D.2. Define the lower-level objective function g(x, y) = y4, and the lower-level constraint
h(x, y) := y2 − 1. Then g(x, y) is convex, and h(x, y) is strongly convex. The optimal solution
y∗(x) = 0 for any x. However, the hypergradient

∇xf(x, y
∗(x))−∇2

xyg(x, y
∗(x))(∇2

yyg(x, y
∗(x))−1∇yf(x, y

∗(x))

is not well-defined since ∇2
yyg(x, y) = 0 is not invertible for any x and y. In this context, how to

calculate the hypergradient remains unexplored.
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Remark D.1. For the strong convexity of the lower-level problem in the barrier reformulation, we
need at least one constraint hi(x, y) to be strongly convex in y. However, by Assumption D.1(3),
we can add a constraint hk+1(x, y) = ∥y∥2 ≤ R2 which is strongly convex in y. After adding this
constraint, it remains equivalent to the original problem. Therefore, we can say Assumption D.1(3)
implies Assumption D.2.

The most important result, Theorem 4.1, still holds in the general convex case. Therefore,
Algorithm 1 and Algorithm 2 still work in the general convex case, and we can get the same
convergence rate Õ(1/(ϵ2t4.5)) in Theorem 4.3. However, we do not have the convergence for
hypergradient. The Algorithm 3 does not work for this case.

D.1 Proof of Proposition 3.1

Through direct computing the Hessian of g̃t(x, y
∗
t (x)), we get

∇2
yy g̃t(x, y

∗
t (x)) = ∇2

yyg(x, y
∗
t (x)) + t

k∑
i=1

(
∇2

yyhi(x, y
∗
t (x))

−hi(x, y∗t (x))
+

∇yhi(x, y
∗
t (x))∇yhi(x, y

∗
t (x))

⊤

h2i (x, y
∗
t (x))

)
.

If Assumption 3.2 holds, then ∇2
yy g̃t(x, y) ⪰ µgI, which means y∗t (x) is unique for any t > 0 and

x ∈ X . Thus the hypergradient can be computed directly by using implicit function Theorem (see
equation (2.8) in Ghadimi and Wang (2018))

∇xϕ̃t(x) = ∇xf(x, y
∗
t (x))−∇2

xy g̃t(x, y
∗
t (x))(∇2

yy g̃t(x, y
∗
t (x)))

−1∇yf(x, y
∗
t (x)). (D.1)

This also illustrates that ϕ̃t(x) is differentiable.
If Assumption 3.3 holds (i.e., hi’s and g are linear), the Hessian can be bounded below by

∇2
yy g̃t(x, y

∗
t (x)) = t

k∑
i=1

∇yhi(x, y
∗
t (x))∇yhi(x, y

∗
t (x))

⊤

h2i (x, y
∗
t (x))

≥ t

mini h2i (x, y
∗
t (x))

k∑
i=1

∇yhi(x, y
∗
t (x))∇yhi(x, y

∗
t (x))

⊤.

It is noteworthy that hi(x, y
∗
t (x)) < 0 for any i. This is because, if hi(x, y

∗
t (x)) = 0 for some i,

then g̃t(x, y
∗(x)) = ∞ due to the log-barrier, which contradicts that y∗t (x) minimize g̃t(x, y). Since

hi(x, y) is linear, we can set

hi(x, y) = ai(x)
⊤y − bi(x).

Define A(x) = (a1(x), · · · , ak(x))⊤. Note that the feasible set Y(x) is compact, we get A(x)⊤A(x)
is positive definitive for any x. Otherwise, if there exists a vector v such that v⊤A(x)⊤A(x)v = 0,
then v⊤ai(x) = 0 for any i. However, in this case, if hi(x, y) ≤ 0, it implies that hi(x, y + αv) ≤ 0
for any α, which contradicts the compactness of feasible set. Thus, we know ∇2

yy g̃t(x, y
∗
t (x)) ≻ 0,

which implies (D.1) still holds. We obtain that ϕ̃t(x) is differentiable.

E Convergence of Hypergradient to the original problem

E.1 Proof of Proposition 3.2

(1) Under the strongly convex setting, we already have that y∗(x) is unique. By Giorgi and Zuccotti
(2018), it is known that ∇xy

∗(x) exists. As for the converse, it does not hold. Consider the following
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counterexample: g(x, y) = y2 and h(x, y) = y, where y ∈ R. Then y∗(x) = 0 and ∇xy
∗(x) = 0 for

any x, and also h(x, y) is always active. However, by KKT condition we have

0 = ∇yg(x, 0) + λ(x)∇yh(x, 0) = λ(x)∇yh(x, 0) = λ(x).

Thus the multiplier λ(x) always equals 0.

(2) Under the linear setting, we fist prove (a) is equivalent to (b), and then prove (b) is equivalent
to (c).

(a)⇒(b): Assuming x is an SCSC point, we want to show that y∗(x) is unique. We will use proof
by contradiction to demonstrate that if this is not true, then there must exist a point (x, y) at which
the optimal Lagrange multiplier λi(x, y) is zero for some i.

Suppose y∗(x) is not unique, then the optimal solution set must be the face F of a polyhedron.
Denote ∂F as the relative boundary of F (for specific definition, see Definition 2.11 on Page 28 in
Drusvyatskiy (2020)). For any two points y and y′ in F \ ∂F , they have the same active constraints.
Due to linearity of g and h, we have ∇yg(x, y) = ∇yg(x, y

′) and ∇yhi(x, y) = ∇yhi(x, y
′) for any i.

Combining these facts with the LICQ assumption, we get λi(x, y) = λi(x, y
′). For any point y′′ in

∂F , the active index set of y ∈ F \ ∂F is necessarily a proper subset of the active index set of y′′.
By LICQ assumption, we can prove λi(x, y) = λi(x, y

′′) for any active i as follows: denote I∗(x, y),
I∗(x, y′′) as the set of active indices at (x, y) and (x, y′′), respectively. Consider the following KKT
condition at (x, y) and (x, y′′)

∇yg(x, y) +
∑

i∈I∗(x,y)

λi(x, y)∇yhi(x, y) = 0 (E.1)

∇yg(x, y
′′) +

∑
i∈I∗(x,y′′)

λi(x, y
′′)∇yhi(x, y

′′) = 0 (E.2)

Note that I∗(x, y) is a proper subset of I∗(x, y′′), and ∇yg(x, y) = ∇yg(x, y
′′), ∇yhi(x, y) =

∇yhi(x, y
′′) since g(x, y), hi(x, y) is linear in y for any i, by subtracting (E.1) from (E.2), we have:∑

i∈I∗(x,y′′)

(λi(x, y
′′)− λi(x, y))∇yhi(x, y

′′) = 0.

By LICQ assumption, the gradients ∇yhi(x, y
′′) are independent for i ∈ I∗(x, y′′). Thus, we obtain

that λi(x, y) = λi(x, y
′′) for any i ∈ I∗(x, y′′). Since I∗(x, y) is a proper subset of I∗(x, y′′), there

exists an index i ∈ I∗(x, y′′) but i /∈ I∗(x, y). Therefore, we know λi(x, y) = 0, which further means
λi(x, y

′′) = λi(x, y) = 0. However, i is active at (x, y′′). This contradicts the assumption that x is an
SCSC point, thus proving the uniqueness of y∗(x). By the argument above, we can also conclude
λi(x, y) is not a function of y ∈ y∗(x).

(b)⇒(a): Assuming y∗(x) is unique, we want to show x is an SCSC point. From the proof of
(a)⇒(b), we know that λi(x, y) is independent of the choice of y ∈ y∗(x). With out loss of generality,
we denote λi(x, y) = λi(x). We will use proof by contradiction to demonstrate that if this is not true,
we can construct a vector v such that we can prove hi(x, y

∗(x) + sv) ≤ 0 for any index i and s small
enough. This means (x, y∗(x) + sv) is feasible. We can also prove g(x, y∗(x) + sv) = g(x, y∗(x)).
This contradicts the uniqueness of y∗(x).

Given that y∗(x) is the unique optimal solution, it must be an extreme point of a polyhedron.
Without loss of generality, we assume y∗(x) is determined by hi(x, y

∗(x)) = 0, i = 1, ..., p, i.e. the
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first p constraints are active. Since y∗(x) is unique, we have p ≥ m. By assuming the LICQ, we
also know p ≤ m. Thus p exactly equals m. By complementary slackness, the multipliers satisfy
λi(x) = 0 for i = m+ 1, ..., k. We now prove that λi(x) > 0 for each i ∈ {1, ...,m}. Suppose, for
contradiction, that λi(x) = 0 for some i ∈ {1, ...,m}. Without loss of generality, assume λi(x) = 0
for i ∈ {1, ..., l}, where l ≤ m. According to KKT conditions, we have

∇yg(x, y
∗(x)) +

k∑
i=1

λi(x)∇yhi(x, y
∗(x))

=

{
∇yg(x, y

∗(x)) +
∑m

i=l+1 λi(x)∇yhi(x, y
∗(x)) if l < m

∇yg(x, y
∗(x)) if l = m

(E.3)

=0.

For notational convenience, we suppose that l < m. The case that l = m is similar. Therefore,

∇yg(x, y
∗(x)) ∈ span{∇yhi(x, y

∗(x)) : i = l + 1, ...,m},

where span{∇yhi(x, y
∗(x)) : i = l + 1, ...,m} is the subspace spanned by ∇yhi(x, y

∗(x)) for i =
l + 1, ...,m. Now consider the subspace span{∇yhi(x, y

∗(x)) : i = 1, ..., l}. The LICQ assumption
means these vectors are independent, thus the dimension of this subspace is l. Let us denote the
matrix formed by these gradients as

A = [∇yh1(x, y
∗(x)), · · · ,∇yhl(x, y

∗(x))]⊤.

By Gordan’s theorem, either Av < 0 has a solution v, or A⊤w = 0 has a nonzero solution w with
w ≥ 0. Note that by LICQ assumption, ∇yh1(x, y

∗(x)), · · · ,∇yhl(x, y
∗(x)) are linear independent,

so A⊤w = 0 has only the zero solution. Consequently, there exists a vector v ̸= 0 such that
v⊤∇yhi(x, y

∗(x)) < 0 for any i ∈ {1, ...,m}. Treating span{∇yhi(x, y
∗(x)) : i = 1, ...,m} as

the entire space, we consider the orthogonal complement of the subspace span{∇yhi(x, y
∗(x)) :

i = 1, ..., l}, denoted as (span{∇yhi(x, y
∗(x)) : i = 1, ..., l})⊥. Denote the sum of this space and

the space spanned by v as (span{∇yhi(x, y
∗(x)) : i = 1, ..., l})⊥ + span{v}. The dimension of

(span{∇yhi(x, y
∗(x)) : i = 1, ..., l})⊥ + span{v} is m − l + 1. Treating Rm as the entire space, we

consider the orthogonal complement of the subspace span{∇yhi(x, y
∗(x)) : i = l+1, ...,m}, denoted

as (span{∇yhi(x, y
∗(x)) : i = l + 1, ...,m})⊥. Its dimension is l. Then, the intersection of two

subspaces{
(span{∇yhi(x, y

∗(x)) : i = 1, ..., l})⊥ + span{v}
}
∩ (span{∇yhi(x, y

∗(x)) : i = l + 1, ...,m})⊥ ̸= ∅

since the sum of their dimensions is greater that m. Choose a vector v̂ ≠ 0 in the intersection of
the two subspaces. We decompose v̂ = v1 + v2, where v1 ∈ (span{∇yhi(x, y

∗(x)) : i = 1, ..., l})⊥
and v2 ∈ span{v}, so there exist a constant α such that v2 = αv. We can assume α ≥ 0, otherwise
consider −v̂. Therefore, we have

v̂⊤∇yhi(x, y
∗(x)) = v⊤2 ∇yhi(x, y

∗(x)) = αv⊤∇yhi(x, y
∗(x)) ≤ 0

for any i ∈ {1, ..., l}, which implies

hi(x, y
∗(x) + sv̂) ≤ 0 for any i ∈ {1, ..., l}, and s > 0 (E.4)
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by the linearity of hi(x, y). Note that v̂ ∈ (span{∇yhi(x, y
∗(x)) : i = l + 1, ...,m})⊥, we also have

v̂⊤∇yhi(x, y
∗(x)) = 0 for any i ∈ {l + 1, ...,m}, which means

hi(x, y
∗(x) + sv̂) = 0 for any i ∈ {l + 1, ...,m} and s ∈ R. (E.5)

Since i ∈ {m + 1, ..., k} is inactive, we know hi(x, y
∗(x)) < 0 for any i ∈ {m + 1, ..., k}. By the

continuity of hi(x, y) we can find a constant S > 0 such that

hi(x, y
∗(x) + sv̂) < 0 for any 0 < s ≤ S. (E.6)

Combining the fact v̂⊤∇yhi(x, y
∗(x)) = 0 and (E.3), we obtain v̂⊤∇yg(x, y

∗(x)) = 0, and thus

g(x, y∗(x) + sv̂) = g(x, y∗(x)) for any s ∈ R. (E.7)

(E.4), (E.5), (E.6) means y∗(x) + sv̂ remains feasible for any 0 < s ≤ S. (E.7) implies y∗(x) + sv̂ is
still optimal for any 0 < s ≤ S. These contradicts the uniqueness of y∗(x). Therefore, we conclude
that λi(x) > 0 for any i ∈ {1, ...,m}, i.e. x is an SCSC point.

(b)⇒(c): Assuming y∗(x) is unique, we will prove ∇xy
∗(x) exists. Since we have proved that (b)

is equivalent to (a), x is also an SCSC point. By Lemma B.3, i.e. the continuity of λi(x), there
exists a neighborhood U of x such that any point in U is an SCSC point, and their active indices
are the same. Without loss of generality, suppose y∗(x) is the solution of following equationsh1(x, y

∗(x))
...

hp(x, y
∗(x))

 = 0.

for any x in the neighborhood. Since y∗(x) is unique, we have p ≥ m. According to LICQ assump-
tion, we also know p ≤ m. Therefore, p exactly equals m, and (∇yh1(x, y

∗(x)), ..., hm(x, y∗(x))) is
invertivble. By the Implicit Function Theorem, y∗(x) is differentiable at x.

(c)⇒(b): Assuming ∇xy
∗(x) exists, we will show y∗(x) is unique. The existence of the gradient

∇xy
∗(x) implicitly assumes differentiability at the point y∗(x), which in turn requires that y∗(x) be

well-defined and single-valued. Therefore, y∗(x) is unique.

E.2 Proof of Theorem 3.3

We first establish the following lemma:

Lemma E.1. Suppose Assumption 3.1 and 3.3 hold and y∗(x) is unique, then we have t/(−hi(x, y
∗
t (x)))

converges to λi(x).

Proof. The KKT condition of the original problem is

∇yg(x, y
∗(x)) +

k∑
i=1

λi(x)∇yhi(x, y
∗(x)) = 0. (E.8)

We first claim that under linear case, the notations in (E.8) is also meaningful because

1. By Remark 3.2, λi(x, y) is independent of the choice of y ∈ y∗(x). Without loss of generality
we denote λi(x) = λi(x, y);
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2. Although y∗(x) may represent a set, given that hi(x, y) and g(x, y) are all linear in y, ∇yhi(x, y)
is independent of the choice of y. Without loss of generality we use the notation ∇yhi(x, y

∗(x))
and ∇yg(x, y

∗(x)).

By subtracting (E.8) from optimal condition equation of barrier reformulation

∇yg(x, y
∗
t (x)) +

k∑
i=1

t

−hi(x, y∗t (x))
∇yhi(x, y

∗
t (x)) = 0,

we derive the following expression

∇yg(x, y
∗(x))−∇yg(x, y

∗
t (x)) +

k∑
i=1

(
λi(x)∇yhi(x, y

∗(x))− t

−hi(x, y∗t (x))
∇yhi(x, y

∗
t (x))

)
= 0.

By adding and subtracting
∑k

i=1 λi(x)∇yhi(x, y
∗
t (x), we obatin

0 =∇yg(x, y
∗(x))−∇yg(x, y

∗
t (x))

+
k∑

i=1

(λi(x)∇yhi(x, y
∗(x))− λi(x)∇yhi(x, y

∗
t (x)))

+
k∑

i=1

(
λi(x)∇yhi(x, y

∗
t (x))−

t

−hi(x, y∗t (x))
∇yhi(x, y

∗
t (x))

)
=∇yg(x, y

∗(x))−∇yg(x, y
∗
t (x))

+

k∑
i=1

λi(x) (∇yhi(x, y
∗(x))−∇yhi(x, y

∗
t (x)))

+
k∑

i=1

(
λi(x)−

t

−hi(x, y∗t (x))

)
∇yhi(x, y

∗
t (x)).

It follows that∥∥∥∥∥
k∑

i=1

(
λi(x)−

t

−hi(x, y∗t (x))

)
∇yhi(x, y

∗
t (x))

∥∥∥∥∥
≤∥∇yg(x, y

∗(x))−∇yg(x, y
∗
t (x))∥+

∥∥∥∥∥
k∑

i=1

λi(x) (∇yhi(x, y
∗(x))−∇yhi(x, y

∗
t (x)))

∥∥∥∥∥
≤∥∇yg(x, y

∗(x))−∇yg(x, y
∗
t (x))∥+

k∑
i=1

λi(x) ∥∇yhi(x, y
∗(x))−∇yhi(x, y

∗
t (x))∥ (E.9)

(i)
=0,

where (i) comes from the following equations due to the linearity of g(x, y) and hi(x, y) for any i

∥∇yg(x, y
∗(x))−∇yg(x, y

∗
t (x))∥ = 0,

∥∇yhi(x, y
∗(x))−∇yhi(x, y

∗
t (x))∥ = 0.
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Next we prove that t/(−hi(x, y
∗
t (x))) converges to λi(x) for any i, i.e. for any ϵ > 0, there exists T

such that for any 0 < t ≤ T , we have∣∣∣∣λi(x)−
t

−hi(x, y∗t (x))

∣∣∣∣ ≤ ϵ.

Without loss of generality, we prove the case i = 1. If this claim were false, there exists ϵ0 > 0 such
that for any T > 0, we can find 0 < t ≤ T satisfies∣∣∣∣λ1(x)−

t

−h1(x, y∗t (x))

∣∣∣∣ ≥ ϵ0.

This implies we can find a sequence tj , such that∣∣∣∣∣λ1(x)−
tj

−h1(x, y∗tj (x))

∣∣∣∣∣ ≥ ϵ0.

for any j and limj→∞ tj = 0. Set

µi
j = λi(x)−

tj
−hi(x, y∗tj (x))

and let i∗j = argmaxi |µi
j |, we can choose a subsequence of {tj}∞j=1, still denoted as {tj}∞j=1, such

that i∗j = i∗ for any j, where index i∗ is a fixed index. It holds that |µi∗
j | ≥ |µ1

j | ≥ ϵ0. Moreover, we

have |µi
j |/|µi∗

j | ≤ 1 for any index i. Therefore, we can select a subsequence, still denoted as {tj}∞j=1,

such that limj→∞ |µi
j |/|µi∗

j | =: µ̂i exists for any i. By (E.9), we obtain∥∥∥∥∥
k∑

i=1

(
λi(x)−

tj
−hi(x, y∗tj (x))

)
∇yhi(x, y

∗
tj (x))

∥∥∥∥∥ = 0 (E.10)

Let j go to infinity, we obtain

k∑
i=1

µ̂i∇yhi(x0, y
∗(x0)) = 0.

Recall (3.2) says

∥y − y∗(x)∥ ≤ 1

τ(x)∥∇yg(x, y∗(x))∥
(g(x, y)− g(x, y∗(x))) .

According to Lemma B.1, which shows g(x, y∗t )− g(x, y∗(x)) ≤ kt, we have

∥y∗tj (x)− y∗(x)∥ ≤ 1

τ(x)∥∇yg(x, y∗(x))∥

(
g(x, y∗tj (x))− g(x, y∗(x))

)
≤ ktj

τ(x)∥∇yg(x, y∗(x))∥
,

(E.11)

where τ(x) is the lower bound of the cosine of the angle between y − y∗(x) and the ∇yg(x, y
∗(x)).

The right hands of (E.11) is finite because when y∗(x) is unique, τ(x)∥∇yg(x, y
∗(x))∥ ≠ 0. Therefore,

limj→∞ y∗tj (x) = y∗(x). This implies

|µ̂i| = lim
j→∞

|µi
j |

|µi∗
j |

≤
|λi(x)− 0

−hi(x,y∗(x))
|

ϵ0
= 0
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for any i /∈ I∗(x0). Dividing both sides of (E.10) with µi∗
j and let j go to infinity, we have

0 = lim
j→∞

∥∥∥∥∑k
i=1

(
λi(x)− tj

−hi(x,y∗tj
(x))

)
∇yhi(x, y

∗
tj (x))

∥∥∥∥
µi∗
j

=

k∑
i=1

µ̂i∇yhi(x, y
∗(x))

(i)
=

∑
i∈I∗(x0)

µ̂i∇yhi(x, y
∗(x))

In (i) we utilize the face that µ̂i = 0 for any i /∈ I∗(x0). Since µ̂i∗ = limj→∞ |µi∗
j |/|µi∗

j | = 1, we
also have i∗ ∈ I∗(x). However, by the LICQ assumption, ∇yhi(x, y

∗(x)) are linear independent
for i ∈ I∗(x0), which means µ̂i for any i ∈ I∗(x0). Here is a contradiction, so t/(−hi(x, y

∗
t (x)))

converges to λi(x) for any i.

Lemma E.2. Suppose Assumption 3.1 and Assumption 3.3 hold. If x is an SCSC point, then
there are exact m constraints active and the following matrix is invertible:

k∑
i=1

λ2
i (x)∇yhi(x, y

∗(x)) (∇yhi(x, y
∗(x)))⊤ .

Proof. By Proposition 3.2, x is an SCSC point means y∗(x) is unique. Since the lower-level
problem is a linear program, y∗(x) is a vertex of a polyhedron, so there are at least m constraints
active. According to LICQ assumption, there are at most m constraints active. Without loss of
generality, assume hi(x, y

∗(x)) is active for i = 1, ...,m. We also know ∇yhi(x, y
∗(x)) are linear

independent for i = 1, ...,m by LICQ assumption. Therefore, the following matrix

k∑
i=1

λ2
i (x)∇yhi(x, y

∗(x)) (∇yhi(x, y
∗(x)))⊤ =

m∑
i=1

λ2
i (x)∇yhi(x, y

∗(x)) (∇yhi(x, y
∗(x)))⊤ .

is invertible.

Next, we prove the relation of Jacobians in linear case when t approaches 0.
Proof of Theorem 3.3: We fix an SCSC point x0 and prove this theorem at this point. We
intend to present our proof in two steps. First, we will compute the limit of ∇xy

∗
t (x0) when t goes

to 0. Second, we will compute ∇xy
∗(x0) directly, and then show that they are equal.

Step 1. In this step, we will use the standard process to compute the Jacobian ∇xy
∗
t (x0) as follows

∇xy
∗
t (x0) = (∇yy g̃t(x0, y

∗
t (x0)))

−1∇yxg̃t(x0, y
∗
t (x0)) (E.12)

= (t∇yy g̃t(x0, y
∗
t (x0)))

−1t∇yxg̃t(x0, y
∗
t (x0)).

where 0 < t ≤ T with some constant T . Next we will leverage Lemma E.1 and Lemma E.2 to
compute the limit

lim
t→0

(t∇yy g̃t(x0, y
∗
t (x0)))

−1t∇yxg̃t(x0, y
∗
t (x0)).

Since g̃t(x, y) is strongly convex in y for any x, by the optimal condition of the barrier reformulated
lower-level problem, we have

∇y g̃t(x, y
∗
t (x)) = 0 ∀x.
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Note that g̃t is two times continuously differentiable by Assumption 3.1(1), to get the expression of
∇xy

∗
t (x0), we take the gradient with respect to x at point x0 on both sides, yielding

0 =∇xy g̃t(x0, y
∗
t (x0))

(i)
=∇x

(
∇yg(x0, y

∗
t (x0)) +

k∑
i=1

t∇yhi(x0, y
∗
t (x0))

−hi(x0, y∗t (x0))

)
(ii)
=∇2

xyg(x0, y
∗
t (x0)) + (∇xy

∗
t (x0))

⊤∇2
yyg(x0, y

∗
t (x0))

+

k∑
i=1

t∇xhi(x0, y
∗
t (x0)) (∇yhi(x0, y

∗
t (x0)))

⊤

h2i (x0, y
∗
t (x0))

+ (∇xy
∗
t (x0))

⊤
k∑

i=1

t∇yhi(x0, y
∗
t (x0)) (∇yhi(x0, y

∗
t (x0)))

⊤

h2i (x0, y
∗
t (x0))

+
k∑

i=1

t∇2
xyhi(x0, y

∗
t (x0))

−hi(x0, y∗t (x0))
+ (∇xy

∗
t (x0))

⊤
k∑

i=1

t∇2
yyhi(x0, y

∗
t (x0))

−hi(x0, y∗t (x0))
,

where (i) is by the definition of g̃t(x, y) and (ii) is by direct computation. Rearranging terms, we
obtain(

∇2
yyg(x0, y

∗
t (x0)) +

k∑
i=1

t∇yhi(x0, y
∗
t (x0)) (∇yhi(x0, y

∗
t (x0)))

⊤

h2i (x0, y
∗
t (x0))

+
k∑

i=1

t∇2
yyhi(x0, y

∗
t (x0))

−hi(x0, y∗t (x0))

)
∇xy

∗
t (x0)

=−

(
∇2

yxg(x0, y
∗
t (x0)) +

k∑
i=1

t∇yhi(x0, y
∗
t (x0)) (∇xhi(x0, y

∗
t (x0)))

⊤

h2i (x0, y
∗
t (x0))

+
k∑

i=1

t∇2
yxhi(x0, y

∗
t (x0))

−hi(x0, y∗t (x0))

)
.

(E.13)

Lemma E.1 and Lemma B.1 tell us limt→0 t/(−hi(x0, y
∗
t (x0))) = λi(x0) for any i and limt→0 y

∗
t (x0) =

y∗(x0). Thus

lim
t→0

(
t∇2

yyg(x0, y
∗
t (x0)) +

k∑
i=1

t2∇yhi(x0, y
∗
t (x0)) (∇yhi(x0, y

∗
t (x0)))

⊤

h2i (x0, y
∗
t (x0))

+ t

k∑
i=1

t∇2
yyhi(x0, y

∗
t (x0))

−hi(x0, y∗t (x0))

)
(i)
=

k∑
i=1

λ2
i (x0)∇yhi(x0, y

∗(x0)) (∇yhi(x0, y
∗(x0)))

⊤ , (E.14)

and

lim
t→0

(
t∇2

yxg(x0, y
∗
t (x0)) +

k∑
i=1

t2∇yhi(x0, y
∗
t (x0)) (∇xhi(x0, y

∗
t (x0)))

⊤

h2i (x0, y
∗
t (x0))

+ t

k∑
i=1

t∇2
yxhi(x0, y

∗
t (x0))

−hi(x0, y∗t (x0))

)
(ii)
=

k∑
i=1

λ2
i (x0)∇yhi(x0, y

∗(x0)) (∇xhi(x0, y
∗(x0)))

⊤ , (E.15)

where (i), (ii) are because

lim
t→0

t∇2
yyg(x0, y

∗
t (x0)) = lim

t→0
t · ∇2

yyg(x0, y
∗(x0)) = 0,

lim
t→0

t∇2
yxg(x0, y

∗
t (x0)) = lim

t→0
t · ∇2

yxg(x0, y
∗(x0)) = 0,

lim
t→0

t
t∇2

yyhi(x0, y
∗
t (x0))

−hi(x0, y∗t (x0))
= lim

t→0
t · λi(x0)∇2

yyhi(x0, y
∗(x0)) = 0,
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lim
t→0

t
t∇2

yxhi(x0, y
∗
t (x0))

−hi(x0, y∗t (x0))
= lim

t→0
t · λi(x0)∇2

yxhi(x0, y
∗(x0)) = 0.

By Lemma E.2, the following matrix is invertible

k∑
i=1

λ2
i (x0)∇yhi(x0, y

∗(x0)) (∇yhi(x0, y
∗(x0)))

⊤ .

Therefore, again applying

lim
t→0

k∑
i=1

t2∇yhi(x0, y
∗
t (x0)) (∇yhi(x0, y

∗
t (x0)))

⊤

h2i (x0, y
∗
t (x0))

=
k∑

i=1

λ2
i (x0)∇yhi(x0, y

∗(x0)) (∇yhi(x0, y
∗(x0)))

⊤ ,

we can find a constant T small enough such that

k∑
i=1

t2∇yhi(x0, y
∗
t (x0)) (∇yhi(x0, y

∗
t (x0)))

⊤

h2i (x0, y
∗
t (x0))

is invertible for any 0 < t ≤ T . This implies the invertibility of

t∇2
yyg(x0, y

∗
t (x0)) +

k∑
i=1

t2∇yhi(x0, y
∗
t (x0)) (∇yhi(x0, y

∗
t (x0)))

⊤

h2i (x0, y
∗
t (x0))

+ t

k∑
i=1

t∇2
yyhi(x0, y

∗
t (x0))

−hi(x0, y∗t (x0))
.

for any 0 < t ≤ T . By (E.13), we derive the expression of ∇xy
∗
t (x0) for any 0 < t ≤ T

∇xy
∗
t (x0) =−

[
t∇2

yyg(x0, y
∗
t (x0)) +

k∑
i=1

t2∇yhi(x0, y
∗
t (x0)) (∇yhi(x0, y

∗
t (x0)))

⊤

h2i (x0, y
∗
t (x0))

+ t

k∑
i=1

t∇2
yyhi(x0, y

∗
t (x0))

−hi(x0, y∗t (x0))

]−1

×

[
t∇2

yxg(x0, y
∗
t (x0)) +

k∑
i=1

t2∇yhi(x0, y
∗
t (x0)) (∇xhi(x0, y

∗
t (x0)))

⊤

h2i (x0, y
∗
t (x0))

+ t

k∑
i=1

t∇2
yxhi(x0, y

∗
t (x0))

−hi(x0, y∗t (x0))

]
From (E.14) and (E.15), we have

lim
t→0

∇xy
∗
t (x0) = lim

t→0
−

(
k∑

i=1

(
t

−hi(x0, y∗t (x0))

)2

∇yhi(x0, y
∗
t (x0)) (∇yhi(x0, y

∗
t (x0)))

⊤
)−1

×

(
k∑

i=1

(
t

−hi(x0, y∗t (x0))

)2

∇yhi(x0, y
∗
t (x0)) (∇xhi(x0, y

∗
t (x0)))

⊤
)

=−

(
k∑

i=1

λ2
i (x0)∇yhi(x0, y

∗
t (x0)) (∇yhi(x0, y

∗
t (x0)))

⊤
)−1

×

(
k∑

i=1

λ2
i (x0)∇yhi(x0, y

∗
t (x0)) (∇xhi(x0, y

∗
t (x0)))

⊤
)

Step 2. In this step, we will establish that

∇xy
∗(x0) =−

(
k∑

i=1

λ2
i (x0)∇yhi(x0, y

∗(x0)) (∇yhi(x0, y
∗(x0)))

⊤
)−1

×

(
k∑

i=1

λ2
i (x0)∇yhi(x0, y

∗(x0)) (∇xhi(x0, y
∗(x0)))

⊤
)
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=−

(
k∑

i=1

λi(x0)∇yhi(x0, y
∗(x0)) (λi(x0)∇yhi(x0, y

∗(x0)))
⊤
)−1

×

(
k∑

i=1

λi(x0)∇yhi(x0, y
∗(x0)) (λi(x0)∇xhi(x0, y

∗(x0)))
⊤
)

By the continuity of hi(x, y) and Lemma B.3, i.e. the continuity of λi(x), we can select a neighborhood
U of x0 such that the active index set for any point in U is the same as that of x0. According to
Proposition 3.2, x is an SCSC point, which means y∗(x) is unique. By Lemma E.2, there are exact
m constrains active at point x0, we assume hi(x0, y

∗(x0)) = 0 for i = 1, ...,m, and i = m+ 1, ..., k
are inactive. Therefore, y∗(x) is the solution of the following m equationsh1(x, y)

...
hm(x, y)

 = 0.

for any x in U . Since λi(x0) > 0 for any active index at point x0 with i = 1, ...,m, these equations
are equivalent to  λ1(x0)h1(x, y)

...
λm(x0)hm(x, y)

 = 0.

Replace y by y∗(x) in these equations, we have λ1(x0)h1(x, y
∗(x))

...
λm(x0)hm(x, y∗(x))

 = 0.

These hold for any x in U . Take gradient for x on both sides, we obtain λ1(x0)∇⊤
x h1(x, y

∗(x))
...

λm(x0)∇⊤
x hm(x, y∗(x))

+

 λ1(x0)∇⊤
y h1(x, y

∗(x))
...

λm(x0)∇⊤
y hm(x, y∗(x))

∇xy
∗(x) = 0

for any x in U . Multiply the matrix (λ1(x0)∇yh1(x, y
∗(x)), · · · , λm(x0)∇yhm(x, y∗(x))) to both

sides and moving terms. Note that the index i = m+1, ..., k are inactive at point x0, then λi(x0) = 0
for i = m+ 1, ..., k. We finalize

∇xy
∗(x0) =−

(
k∑

i=1

λi(x0)∇yhi(x0, y
∗(x0)) (λi(x0)∇yhi(x0, y

∗(x0)))
⊤
)−1

×

(
k∑

i=1

λi(x0)∇yhi(x0, y
∗(x0)) (λi(x0)∇xhi(x0, y

∗(x0)))
⊤
)

(E.16)

= lim
t→0

∇xy
∗
t (x0).

This completes the proof.
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E.3 Proof of Theorem 3.4

Lemma E.3. Suppose Assumption 3.1 and 3.2 hold, then we have t/(−hi(x, y
∗
t (x))) converges to

λi(x) uniformly for any i.

Proof. The KKT condition of original problem is

∇yg(x, y
∗(x)) +

k∑
i=1

λi(x)∇yhi(x, y
∗(x)) = 0. (E.17)

By subtracting (E.17) from optimal condition equation of barrier reformulation, given below,

∇yg(x, y
∗
t (x)) +

k∑
i=1

t

−hi(x, y∗t (x))
∇yhi(x, y

∗
t (x)) = 0,

we derive the following expression

∇yg(x, y
∗(x))−∇yg(x, y

∗
t (x)) +

k∑
i=1

(
λi(x)∇yhi(x, y

∗(x))− t

−hi(x, y∗t (x))
∇yhi(x, y

∗
t (x))

)
= 0.

It follows that

0 =∇yg(x, y
∗(x))−∇yg(x, y

∗
t (x))

+

k∑
i=1

(λi(x)∇yhi(x, y
∗(x))− λi(x)∇yhi(x, y

∗
t (x)))

+
k∑

i=1

(
λi(x)∇yhi(x, y

∗
t (x))−

t

−hi(x, y∗t (x))
∇yhi(x, y

∗
t (x))

)
=∇yg(x, y

∗(x))−∇yg(x, y
∗
t (x))

+
k∑

i=1

λi(x) (∇yhi(x, y
∗(x))−∇yhi(x, y

∗
t (x)))

+

k∑
i=1

(
λi(x)−

t

−hi(x, y∗t (x))

)
∇yhi(x, y

∗
t (x))

=

∥∥∥∥∥
k∑

i=1

(
λi(x)−

t

−hi(x, y∗t (x))

)
∇yhi(x, y

∗
t (x))

∥∥∥∥∥
≤∥∇yg(x, y

∗(x))−∇yg(x, y
∗
t (x))∥+

∥∥∥∥∥
k∑

i=1

λi(x) (∇yhi(x, y
∗(x))−∇yhi(x, y

∗
t (x)))

∥∥∥∥∥
≤∥∇yg(x, y

∗(x))−∇yg(x, y
∗
t (x))∥+

k∑
i=1

|λi(x)| ∥∇yhi(x, y
∗(x))−∇yhi(x, y

∗
t (x))∥ (E.18)

Next we prove that t/(−hi(x, y
∗
t (x))) converges to λi(x) uniformly for any i, i.e. for any ϵ > 0,

there exists T such that for any x ∈ X and 0 < t ≤ T , we have∣∣∣∣λi(x)−
t

−hi(x, y∗t (x))

∣∣∣∣ ≤ ϵ.
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Without loss of generality, we consider the case i = 1. We prove this by contradiction. If there
exists ϵ0 > 0 such that for any T > 0, we can find x ∈ X and 0 < t ≤ T satisfies∣∣∣∣λ1(x)−

t

−h1(x, y∗t (x))

∣∣∣∣ ≥ ϵ0.

This implies we can find a sequence (xj , tj), such that the following holds for any j∣∣∣∣∣λ1(xj)−
tj

−h1(xj , y∗tj (xj))

∣∣∣∣∣ ≥ ϵ0,

and also we have limj→∞ tj = 0. Since X is compact, we can assume limj→∞ xj = x0. Set

µi
j = λi(xj)−

tj
−hi(xj , y∗tj (xj))

and let i∗j = argmaxi |µi
j |, we can choose a subsequence of {(xj , tj)}∞j=1, still denoted as {(xj , tj)}∞j=1,

such that i∗j = i∗ for any j, where index i∗ is a fixed index. It holds that |µi∗
j | ≥ |µ1

j | ≥ ϵ0. Moreover,

we have |µi
j |/|µi∗

j | ≤ 1 for any index i. Therefore, we can select a subsequence, still denoted as

{(xj , tj)}∞j=1, such that limj→∞ |µi
j |/|µi∗

j | =: µ̂i exists for any i. Apply (E.18) to (xj , tj), we obtain∥∥∥∥∥
k∑

i=1

(
λi(xj)−

tj
−hi(xj , y∗tj (xj))

)
∇yhi(xj , y

∗
tj (xj))

∥∥∥∥∥
≤
∥∥∥∇yg(xj , y

∗(xj))−∇yg(xj , y
∗
tj (xj))

∥∥∥+ k∑
i=1

|λi(xj)|
∥∥∥∇yhi(xj , y

∗(xj))−∇yhi(xj , y
∗
tj (xj))

∥∥∥
(E.19)

It is worth noting that

lim
j→∞

(∇yhi(xj , y
∗
tj (xj))−∇yhi(x0, y

∗(x0))) = 0 (E.20)

lim
j→∞

(∇yg(xj , y
∗
tj (xj))−∇yg(x0, y

∗(x0))) = 0. (E.21)

This is because, by Lemma B.1, y∗t (x) uniformly converges to y∗(x). Under strongly convex setting,
we also know y∗(x) continuously depends on x. According to Lemma E.6, y∗tj (xj) converges to
y∗(x0), which implies (xj , y

∗
tj (xj)) converges to (x0, y

∗(x0)).
Note that λi(xj) is uniform bounded by Lemma B.3, the right-hand side of (E.19) converges to

0. Dividing both sides of (E.19) with µ∗
j and let j go to infinity, it follows that

k∑
i=1

µ̂i∇yhi(x0, y
∗(x0)) = 0.

Applying Lemma B.1 to (xj , tj), we have

∥y∗tj (xj)− y∗(xj)∥ ≤

√
2

µg
ktj .
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This means limj→∞ y∗tj (xj) = y∗(x0). Therefore, the following holds

|µ̂i| = lim
j→∞

|µi
j |

|µi∗
j |

≤
|λi(x0)− 0

−hi(x0,y∗(x0))
|

ϵ0
= 0.

Thus, we have ∑
i∈I∗(x0)

µ̂i∇yhi(x0, y
∗(x0)) = 0.

Since µ̂i∗ = limj→∞ |µi∗
j |/|µi∗

j | = 1, we also have i ∈ I∗(x0). However, by the LICQ assumption,

∇yhi(x0, y
∗(x0)) are linear independent for i ∈ I∗(x0), which means µ̂i = 0 for any i ∈ I∗(x0). Here

is a contradiction, so t/(−hi(x, y
∗
t (x))) converges to λi(x) uniformly for any i.

Lemma E.4. Suppose Assumption 3.1 and Assumption 3.2 hold, and x is an SCSC point. Then
limt→0∇xy

∗
t (x) exists.

Proof. Denote I∗(x) be the set of active index at y∗(x). Since LICQ assumption is satisfied at y∗(x),
{∇yhi(x, y

∗(x))}i∈I∗(x) are linearly independent. By Lemma B.1 and Lemma B.2, y∗t (x) continuously
converges to y∗(x), so we can assume that t is sufficiently small such that {∇yhi(x, y

∗
t (x))}i∈I∗(x)

are linearly independent. Following (E.12) in the proof of Theorem 3.3, we derive

∇xy
∗
t (x) =−

(
∇2

yyg(x, y
∗
t (x)) +

k∑
i=1

1

t

t2

h2i (x, y
∗
t (x))

∇yhi(x, y
∗
t (x)) (∇yhi(x, y

∗
t (x)))

⊤ +
k∑

i=1

t∇2
yyhi(x, y

∗
t (x))

−hi(x, y∗t (x))

)−1

×

(
∇2

yxg(x, y
∗
t (x)) +

k∑
i=1

1

t

t2

h2i (x, y
∗
t (x))

∇yhi(x, y
∗
t (x)) (∇xhi(x, y

∗
t (x)))

⊤ +
k∑

i=1

t∇2
yxhi(x, y

∗
t (x))

−hi(x, y∗t (x))

)
Unlike the linear case, handling the strongly convex case becomes extremely challenging. The

reason is that in the linear case, the limit of a few terms in the above expression (e.g., Ak
t (x) and

Dt(x) to be defined later) are invertible, but this is no longer the case without linearity. Therefore,
it is necessary to develop a new set of tools.

Denote the following terms as

vjt (x) =
t

−hj(x, y∗t (x))
∇yhj(x, y

∗
t (x)) (E.22)

vj(x) = λj(x)∇yhj(x, y
∗(x)) (E.23)

V j
t (x) = span{ t

−hi(x, y∗t (x))
∇yhi(x, y

∗
t (x)) : i ∈ {1, ..., j} ∩ I∗(x)} (E.24)

V j = span{λi∇yhi(x, y
∗(x)) : i ∈ {1, ..., j} ∩ I∗(x)}

Aj
t (x) =

j∑
i=1

1

t
(vjt (x))(v

j
t (x))

⊤

=

j∑
i=1

1

t

t2

h2i (x, y
∗
t (x))

∇yhi(x, y
∗
t (x)) (∇yhi(x, y

∗
t (x)))

⊤ , j = 1, ..., k

Bt(x) = ∇2
yyg(x, y

∗
t (x)) +

k∑
i=1

t∇2
yyhi(x, y

∗
t (x))

−hi(x, y∗t (x))
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Bj
t (x) = Aj

t (x) +Bt(x) (E.25)

B(x) = ∇2
yyg(x, y

∗(x)) +
k∑

i=1

λi(x)∇2
yyhi(x, y

∗(x))

Ct(x) = ∇2
yxg(x, y

∗
t (x)) +

k∑
i=1

t∇2
yxhi(x, y

∗
t (x))

−hi(x, y∗t (x))

C(x) = ∇2
yxg(x, y

∗(x)) +
k∑

i=1

λi(x)∇2
yxhi(x, y

∗(x))

Dt(x) =

k∑
i=1

1

t

t2

h2i (x, y
∗
t (x))

∇yhi(x, y
∗
t (x)) (∇xhi(x, y

∗
t (x)))

⊤ , (E.26)

where I∗(x) denotes the set of active index at the point (x, y∗(x)).
By the above notations, we have

∇xy
∗
t (x) =

(
Ak

t (x) +Bt(x)
)−1

(Ct(x) +Dt(x)) . (E.27)

We will demonstrate the convergence of the above two terms separately.
Step 1. To prove that the following limit exists,

lim
t→0

(
Ak

t (x) +Bt(x)
)−1

Ct(x)

we will show limt→0Ct(x) exists and limt→0

(
Ak

t (x) +Bt(x)
)−1

exists as a linear transformation.
By Lemma E.3, i.e. limt→0 t/(−hi(x, y

∗
t (x))) = λi(x), and Lemma B.1, which shows limt→0 y

∗
t (x) =

y∗(x), we have

lim
t→0

Ct(x) = lim
t→0

∇2
yxg(x, y

∗
t (x)) +

k∑
i=1

t∇2
yxhi(x, y

∗
t (x))

−hi(x, y∗t (x))

= ∇2
yxg(x, y

∗(x)) +

k∑
i=1

λi(x)∇2
yxhi(x, y

∗(x)).

Now we prove limt→0(A
k
t (x) +Bt(x))

−1 exists, which is the key point of this proof. We proceed
by induction.

If j = 1 is an active index, note that

Aj
t (x) =

j∑
i=1

1

t
vit(x)(v

i
t(x))

⊤.

Applying the Sherman-Morrison formula, we obtain

(A1
t (x) +Bt(x))

−1 =

(
1

t
v1t (x)

(
v1t (x)

)⊤
+Bt(x)

)−1

= Bt(x)
−1 − Bt(x)

−1v1t (x)v
1
t (x)

⊤
Bt(x)

−1

t2 + v1t (x)
⊤
Bt(x)

−1v1t (x)
.
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To prove limt→0

(
Ak

t (x) +Bt(x)
)−1

exists, it is sufficient to show that limt→0Bt(x) and limt→0 v
1
t (x)

exist, and limt→0 v
1
t (x)

⊤
Bt(x)

−1v1t (x) > 0. Applying Lemma E.3, and Lemma B.1 again, we obtain

lim
t→0

v1t (x) = lim
t→0

t

−h1(x, y∗t (x))
· lim
t→0

∇yh1(x, y
∗
t (x)) = λ1(x)∇yh1(x, y

∗(x)) = v1(x).

Since B(x) ⪰ ∇2
yyg(x, y

∗(x)) ≻ 0, it follows that

lim
t→0

Bt(x)
−1 =

(
∇2

yyg(x, y
∗(x)) +

k∑
i=1

λi(x)∇2
yyhi(x, y

∗(x))

)−1

= B(x)−1 ≻ 0,

Under the LICQ assumption and given that we have assumed index 1 is active, we have v1(x) ̸= 0.

Therefore, limt→0 v
1
t (x)

⊤
Bt(x)

−1v1t (x) = v1(x)⊤B(x)−1v1(x) > 0, implying

lim
t→0

(A1
t (x) +Bt(x))

−1 = B(x)−1 − B(x)−1v1(x)v1(x)
⊤
B(x)−1

v1(x)⊤B(x)−1v1(x)
.

If j = 1 is an inactive index, we obtain

lim
t→0

A1
t (x)

= lim
t→0

1

t

t2

h21(x, y
∗
t (x))

∇yh1(x, y
∗
t (x)) (∇yh1(x, y

∗
t (x)))

⊤

= lim
t→0

t

h21(x, y
∗
t (x))

∇yh1(x, y
∗
t (x)) (∇yh1(x, y

∗
t (x)))

⊤

=0.

Therefore,

lim
t→0

(A1
t (x) +Bt(x))

−1 = B(x)−1.

Next, we prove the existence of limt→0(A
k
t (x)+Bt(x))

−1 by induction. For j = 1, we have proved

the existence of limt→0(A
j
t (x) +Bt(x))

−1. Suppose when j = j̃, limt→0(A
j̃
t (x) +Bt(x))

−1 =: Gj̃(x)

exists, where Gj̃(x) is some quantity to be specified soon. We will prove that for j = j̃ + 1,

limt→0(A
j̃+1
t (x) + Bt(x))

−1 = limt→0(B
j̃
t (x))

−1 =: Gj̃+1(x) also exists, by considering two cases,
depending on whether j̃ + 1 is active or not.
Case 1: j = j̃ + 1 is an active index. Again using the Sherman-Morrison formula, we find

(Aj̃+1
t (x) +Bt(x))

−1 = (
1

t
vj̃+1
t (x)vj̃+1

t (x)
⊤
+Aj̃

t (x) +Bt(x))
−1

(i)
= (

1

t
vj̃+1
t (x)vj̃+1

t (x)
⊤
+B j̃

t (x))
−1

= B j̃
t (x)

−1
− B j̃

t (x)
−1

vj̃+1
t (x)vj̃+1

t (x)
⊤
B j̃

t (x)
−1

t2 + vj̃+1
t (x)

⊤
B j̃

t (x)
−1

vj̃+1
t (x)

. (E.28)

(i) is because the notation in (E.25). Note that limt→0 v
j̃+1
t (x) = λj̃+1(x)∇yhj̃+1(x, y

∗(x)) exists,

and by the induction hypothesis, limt→0B
j̃
t (x)

−1
= Gj̃(x) exists. Then to show that the limit of

(E.28) exists, it is sufficient to prove that

lim
t→0

vj̃+1
t (x)

⊤
B j̃

t (x)
−1

vj̃+1
t (x) = vj̃+1(x)

⊤
Gj̃(x)vj̃+1(x) > 0. (E.29)
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Towards this end, let us first define wj̃+1
t (x) := B j̃

t (x)
−1

vj̃+1
t (x), then it suffices to first show that

wj̃+1(x) = limt→0w
j̃+1
t (x) exists, then vj̃+1(x)

⊤
wj̃+1(x) > 0 as desired.

To proceed, let us first observe that the following two limits exist:

lim
t→0

(Aj̃
t (x) +Bt(x))

−1 = lim
t→0

B j̃
t (x)

−1
:= Gj̃(x) (E.30)

lim
t→0

vj̃+1
t (x) = λj̃+1(x)∇yhj̃+1(x, y

∗(x)),

which represents that limt→0w
j̃+1
t (x) = limt→0(A

j̃
t (x) +Bt(x))

−1vj̃+1
t (x) also exists.

Next we calculate wj̃+1(x) = limt→0w
j̃+1
t (x) indirectly. We decompose vj̃+1

t (x) and wj̃+1
t (x) as

vj̃+1
t (x) = v̂t + v̂⊥t and wj̃+1

t (x) = ŵt + ŵ⊥
t respectively, with v̂t, ŵt ∈ V j̃

t (x) and v̂⊥t , ŵ
⊥
t ∈ (V j̃

t (x))
⊥.

Here V j̃
t (x) defined at (E.24) is

V j
t (x) = span{ t

−hi(x, y∗t (x))
∇yhi(x, y

∗
t (x)) : i ∈ {1, ..., j} ∩ I∗(x)}.

A key observation is, since the term Aj̃
t (x) in B j̃

t (x) has the potential to approach infinity, B j̃
t (x)

will stretch vectors in the subspace V j̃
t (x) to infinite length, hence its inverse will compress vectors

in V j̃
t (x) to zero. We will demonstrate that the limit of ŵt is zero, and then compute the limit of

ŵ⊥
t .
We will first show that the decomposition vectors v̂t, ŵt, v̂

⊥
t , ŵ

⊥
t also have limit when t goes to

0. Note that the projection map has a matrix representation:

ŵt = proj
V j̃
t (x)

wj̃+1
t (x) = Ft(x)(Ft(x)

⊤Ft(x))
−1Ft(x)

⊤wj̃+1
t (x),

where Ft(x) := {[vit(x)] : i ∈ {1, ..., j̃}∩I∗(x)} is the matrix with columns as the vectors vit(x) for i ∈
{1, ..., j̃}∩ I∗(x). According to Lemma E.3, and Lemma B.1, vit(x) converges to vi(x) for i = 1, ..., j̃.
By LICQ assumption, F (x)⊤F (x) is invertible, where F (x) := {[vi(x)] : i ∈ {1, ..., j̃} ∩ I∗(x)} is the
matrix with columns as the vectors vi(x) for i ∈ {1, ..., j̃} ∩ I∗(x). Note that limt→0 Ft(x) = F (x),
we confirm

lim
t→0

Ft(x)(Ft(x)
⊤Ft(x))

−1Ft(x)
⊤ = F (x)(F (x)⊤F (x))−1F (x)⊤

exists. Therefore ŵt converges, and the convergence of ŵ⊥
t = wj̃+1

t (x)− ŵt follows. The convergence
of v̂ and v̂⊥t can also be obtained by a similar process. Denote ŵ = limt→0 ŵt, ŵ

⊥ = limt→0 ŵ
⊥
t and

v̂ = limt→0 v̂t, v̂
⊥ = limt→0 v̂

⊥
t .

Note that

v̂t + v̂⊥t = vj̃+1
t (x)

=
(
Aj̃

t (x) +Bt(x)
)
wj̃+1
t (x)

=
(
Aj̃

t (x) +Bt(x)
)(

ŵt + ŵ⊥
t

)
= Aj̃

t (x)ŵt +Aj̃
t (x)ŵ

⊥
t +Bt(x)ŵt +Bt(x)ŵ

⊥
t , (E.31)

We will compute convergence of some terms in (E.31) which are needed to prvove (E.29)

54



1. Claim: limt→0A
j̃
t (x)ŵ

⊥
t = 0.

Proof. This is because

lim
t→0

Aj̃
t (x)ŵ

⊥
t = lim

t→0

j̃∑
i=1

1

t
vit(x)v

i
t(x)

⊤
ŵ⊥
t

(i)
= lim

t→0

∑
i∈{1,...,̃j}\I∗(x)

1

t
vit(x)v

i
t(x)

⊤
ŵ⊥
t

= lim
t→0

∑
i∈{1,...,̃j}\I∗(x)

t

h2i (x, y
∗
t (x))

∇yhi(x, y
∗
t (x))∇yhi(x, y

∗
t (x))

⊤ŵ⊥
t

(ii)
= 0,

where (i) is because vit(x) ∈ V j̃
t (x), ŵ

⊥
t ∈ (V j̃

t (x))
⊥, and vit(x)ŵ

⊥
t = 0 for any i ∈ {1, ..., j̃} ∩

I∗(x), and (ii) is because limt→0[t/h
2
i (x, y

∗
t (x)) = 0/h2i (x, y

∗(x))] = 0 for any i /∈ I∗(x);

2. Claim: limt→0 ŵt = 0.

Proof. If limt→0 ŵt =: ζ ̸= 0, it must be that ζ ∈ V j̃(x) since ŵt ∈ V j̃
t (x) for any t.

Consequently,

lim
t→0

∥Aj̃
t (x)ŵt∥

(i)
= lim

t→0

∥∥∥∥∥∥
∑

i∈{1,...,̃j}∩I∗(x)

1

t
vit(x)v

i
t(x)

⊤
ŵt

∥∥∥∥∥∥ = ∞, (E.32)

where (i) is because limt→0[t/h
2
i (x, y

∗
t (x))] = 0 for any i /∈ I∗(x) and also limt→0 ŵ

⊥
t = ŵ⊥

exists. (E.32) implies that limt→0 ∥Aj̃
t (x)ŵt + Aj̃

t (x)ŵ
⊥
t + Bt(x)ŵt + Bt(x)ŵ

⊥
t ∥ = ∞, since

limt→0 ∥Aj̃
t (x)ŵ

⊥
t + Bt(x)ŵt + Bt(x)ŵ

⊥
t ∥ exists as all three terms in ∥Aj̃

t (x)ŵ
⊥
t + Bt(x)ŵt +

Bt(x)ŵ
⊥
t ∥ have limits. However, limt→0 ∥v̂t + v̂⊥t ∥ = ∥vj̃(x)∥ < ∞. Combining these facts

with (E.31), we have

∞ > lim
t→0

∥v̂t + v̂⊥t ∥ = lim
t→0

∥Aj̃
t (x)ŵt +Aj̃

t (x)ŵ
⊥
t +Bt(x)ŵt +Bt(x)ŵ

⊥
t ∥ = ∞.

Here is a contradiction, so we conclude limt→0 ŵt = 0;

3. Claim: limt→0Bt(x)ŵt = 0.

Proof. According to Lemma E.3, and Lemma B.1, it is easy to see limt→0Bt(x) = B(x).
Note that limt→0 ŵt = 0, we can directly get limt→0Bt(x)ŵt = 0.

Based on the above results, we are able to compute wj̃+1(x) = limt→0w
j̃+1
t (x) = limt→0 ŵ

⊥
t = ŵ⊥

as follows:

1. Consider a linear transformation B(x) restricted to (V j̃(x))⊥ as follows

B(x)(v) := proj
(V j̃(x))⊥

B(x)v

for any v ∈ (V j̃(x))⊥. We show that B(x) is positive definite. Suppose there exists a

non-zero vector η ∈ (V j̃(x))⊥ such that η⊤B(x)(η) ≤ 0. Decomposing B(x)η = η1 + η2,

where η1 ∈ V j̃(x) and η2 ∈ (V j̃(x))⊥, then η⊤B(x)(η) = η⊤proj
(V j̃(x))⊥

B(x)η = η⊤η2 ≤ 0.

Hence η⊤B(x)η = η⊤(η1 + η2) = η⊤η2 ≤ 0, contradicting the fact that B(x) ⪰ ∇yyg(x, y
∗(x)).

Therefore, B(x) must be a positive definite linear transformation from (V j̃(x))⊥ to (V j̃(x))⊥;
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2. Consider the inverse of B(x) on (V j̃(x))⊥, denoted as (B(x))−1. We extend the linear

transformation (B(x))−1 : (V j̃(x))⊥ → (V j̃(x))⊥ to a linear transformation B̃(x) defined on
Rm as follows

B̃(x)(v) =

0 if v ∈ V j̃(x)

(B(x))−1(v) if v ∈
(
V j̃(x)

)⊥
.

(E.33)

and B̃(x) remains positive definite on (V j̃(x))⊥, as (B(x))−1 is positive definite;

3. We will show that limt→0w
j̃+1
t (x) = B̃(x)(vj̃+1). By calculation, we have

v̂ + v̂⊥ = lim
t→0

v̂t + v̂⊥t

= lim
t→0

vj̃+1
t (x)

= lim
t→0

(
Aj̃

t (x) +Bt(x)
)
wj̃+1
t (x)

= lim
t→0

(
Aj̃

t (x) +Bt(x)
)(

ŵt + ŵ⊥
t

)
= lim

t→0

(
Aj̃

t (x)ŵt +Aj̃
t (x)ŵ

⊥
t +Bt(x)ŵt +Bt(x)ŵ

⊥
t

)
(i)
= lim

t→0
Aj̃

t (x)ŵt +B(x)ŵ⊥

= lim
t→0

∑
i∈{1,...,̃j}

t

h2i (x, y
∗
t (x))

∇yhj(x, y
∗
t (x))∇yhj(x, y

∗
t (x))

⊤ŵt +B(x)ŵ⊥

(ii)
= lim

t→0

∑
i∈{1,...,̃j}∩I∗(x)

t

h2i (x, y
∗
t (x))

∇yhj(x, y
∗
t (x))∇yhj(x, y

∗
t (x))

⊤ŵt +B(x)ŵ⊥

=
∑

i∈{1,...,̃j}∩I∗(x)

(
lim
t→0

t

h2i (x, y
∗
t (x))

∇yhi(x, y
∗
t (x))

⊤ŵ⊥
t

)
∇yhi(x, y

∗(x)) +B(x)ŵ⊥,

where (i) is because limt→0A
j̃
t (x)ŵ

⊥
t = 0, limt→0Bt(x)ŵt = 0, limt→0Bt(x) = B(x) which

have been shown in the claims we proved before, and (ii) is because limt→0 t/h
2
i (x, y

∗
t (x)) = 0

for any i /∈ I∗(x). Note that the vector∑
i∈{1,...,̃j}∩I∗(x)

(
lim
t→0

t

h2i (x, y
∗
t (x))

∇yhi(x, y
∗
t (x))

⊤ŵ⊥
t

)
∇yhi(x, y

∗(x))

is in the subspace V j̃(x), then v̂⊥ = proj
(V j̃(x))⊥

B(x)ŵ⊥ = B(x)(ŵ⊥), implying limt→0w
j̃+1
t (x) =

ŵ⊥ = (B(x))−1(v̂⊥) = B̃(x)(vj̃+1).

To conclude, we get the result that wj̃+1(x) = B̃(x)(vj̃+1). Under the LICQ assumption and

the assumption that j̃ + 1 is active, we have v̂⊥ = proj
(V j̃(x))

⊥vj̃+1(x) ̸= 0. Otherwise, if

proj
(V j̃(x))

⊥vj̃+1(x) = 0, then vj̃+1(x) ∈ V j̃(x), which implies vj̃+1(x) can be expressed as the

linear combination of vi(x) where i ∈ I(x) ∩ {1, ..., j̃}. Note that vi(x) = λi(x)∇yhi(x, y
∗(x)), and
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λi(x) > 0 for any i ∈ I(x). Thus ∇yhj̃+1(x, y
∗(x)) can be expressed as the linear combination of

∇yhi(x, y
∗(x)) where i ∈ I(x) ∩ {1, ..., j̃}. This contradicts the LICQ assumption.

Hence,

lim
t→0

vj̃+1
t (x)

⊤
B j̃

t (x)
−1

vj̃+1
t (x) = (v̂ + v̂⊥)⊤(ŵ + ŵ⊥)

= (v̂ + v̂⊥)⊤ŵ⊥

(i)
= v̂⊥

⊤
(B(x))−1(v̂⊥) (E.34)

(i)
> 0, (E.35)

where (i) is because v̂⊤ŵ⊥ = 0, and (ii) is because B j̃
t (x)

−1
is positive definite in

(
V j̃(x)

)⊥
. It

follows that

lim
t→0

(Aj̃+1
t (x) +Bt(x))

−1 = lim
t→0

B j̃
t (x)

−1
− B j̃

t (x)
−1

vj̃+1
t (x)vj̃+1

t (x)
⊤
B j̃

t (x)
−1

t2 + vj̃+1
t (x)

⊤
B j̃

t (x)
−1

vj̃+1
t (x)

= B̃(x)−
B̃(x)

(
v̂⊥(x)

) (
B̃(x)

(
v̂⊥(x)

))⊤
v̂⊥

⊤
(B(x))−1(v̂⊥)

exists. We have proved the existence of limt→0(A
j̃+1
t (x) + Bt(x))

−1 when j = j̃ + 1 is an active
index.
Case 2: j = j̃ + 1 is an inactive index. In this case, we have

lim
t→0

(Aj̃+1
t (x) +Bt(x))

−1 = lim
t→0

(
t

h2
j̃+1

(x, y∗t (x))
∇yhj̃+1(x, y

∗
t (x))

(
∇yhj̃+1(x, y

∗
t (x))

)⊤
+B j̃

t (x)

)−1

= lim
t→0

(
tE j̃+1

t (x) +B j̃
t (x)

)−1
,

where

Ej
t (x) :=

1

h2j (x, y
∗
t (x))

∇yhj(x, y
∗
t (x)) (∇yhj(x, y

∗
t (x)))

⊤ .

Note that the following limit exists

lim
t→0

E j̃+1
t (x) =

1

h2
j̃+1

(x, y∗(x))
∇yhj̃+1(x, y

∗(x))
(
∇yhj̃+1(x, y

∗(x))
)⊤

.

Further, by inductive assumption, the following limit exists

lim
t→0

B j̃
t

−1
(x) = lim

t→0
(Aj̃

t (x) +Bt(x))
−1.

Further, assuming t is sufficiently small, applying Taylor expansion

(B j̃
t (x) + tE j̃+1

t (x))−1 =B j̃
t (x)

−1
− tB j̃

t (x)
−1

E j̃+1
t (x)B j̃

t (x)
−1

+ t2B j̃
t (x)

−1
E j̃+1

t (x)B j̃
t (x)

−1
E j̃+1

t (x)B j̃
t (x)

−1
− ...
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=B j̃
t

−1
(x) +O(t).

Thus, limt→0(A
j̃+1
t (x) +Bt(x))

−1 = limt→0

(
B j̃

t (x)
−1

+O(t)

)
= Gj̃(x) which is defined in (E.30).

To conclude, we have proved

lim
t→0

(
Ak

t (x) +Bt(x)
)−1

Ct(x)

exists regardless of whether j is active or inactive.
Step 2. Now go back to (E.27), we will show that limt→0(A

k
t (x) +Bt(x))

−1Dt(x) exists. By the
notation (E.26), we have

Dt(x) =

k∑
i=1

1

t

(
t

−hj(x, y∗t (x))

)2

∇yhj(x, y
∗
t (x))∇xhj(x, y

∗
t (x))

=
k∑

i=1

1

t

t

−hj(x, y∗t (x))
∇yhj(x, y

∗
t (x))

(
t

−hj(x, y∗t (x))
∇xhj(x, y

∗
t (x))

)⊤

Note that by Lemma E.3

lim
t→0

(
t

−hj(x, y∗t (x))
∇xhj(x, y

∗
t (x))

)⊤
= (λi(x)∇xhj(x, y

∗(x)))⊤ ,

then it is sufficient to prove that the following limit exists for any j:

lim
t→0

(Ak
t (x) +Bt(x))

−1 1

t

t

−hj(x, y∗t (x))
∇yhj(x, y

∗
t (x)).

Without loss of generality, assume j = k. Otherwise, simply swap the positions of the j-th and k-th
constraints.

If k is an inactive index, then we have

lim
t→0

1

t

t

−hk(x, y
∗
t (x))

∇yhk(x, y
∗
t (x)) = lim

t→0

1

−hk(x, y
∗
t (x))

∇yhk(x, y
∗
t (x)) =

1

−hk(x, y∗(x))
∇yhk(x, y

∗(x)).

It follows that

lim
t→0

(Ak
t (x) +Bt(x))

−1 1

t

t

−hk(x, y
∗
t (x))

∇yhk(x, y
∗
t (x))

= lim
t→0

(Ak
t (x) +Bt(x))

−1 · lim
t→0

1

t

t

−hk(x, y
∗
t (x))

∇yhk(x, y
∗
t (x))

= lim
t→0

(Ak
t (x) +Bt(x))

−1 1

−hk(x, y∗(x))
∇yhk(x, y

∗(x))

=Gk(x)
1

−hk(x, y∗(x))
∇yhk(x, y

∗(x)),

where Gk(x) is defined in (E.30).
If k is an active index, then we have

(Ak
t (x) +Bt(x))

−1 1

t

t

−hk(x, y
∗
t (x))

∇yhk(x, y
∗
t (x))
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(i)
=(Ak

t (x) +Bt(x))
−1 1

t
vkt (x)

=

(
1

t
vkt (x)v

k
t (x)

⊤
+Bk−1

t (x)

)−1 1

t
vkt (x)

=
(
vkt (x)v

k
t (x)

⊤
+ tBk−1

t (x)
)−1

vkt (x)

(i)
=
(
tBk−1

t (x)
)−1

vkt (x)−

(
tBk−1

t (x)
)−1

vkt (x)v
k
t (x)

⊤
(
tBk−1

t (x)
)−1

vkt (x)

1 + vkt (x)
⊤
(
tBk−1

t (x)
)−1

vkt (x)

=

(
tBk−1

t (x)
)−1

vkt (x)

1 + vkt (x)
⊤
(
tBk−1

t (x)
)−1

vkt (x)

=

(
Ak−1

t (x) +Bt(x)
)−1

vkt (x)

t+ vkt (x)
⊤
(
Ak−1

t (x) +Bt(x)
)−1

vkt (x)
. (E.36)

In (i) we plug in t
−hk(x,y

∗
t (x))

∇yhk(x, y
∗
t (x)) = vkt (x), and (ii) is by the Sherman-Morrison formula.

This converges is because: as t converge to 0, by replacing j̃ with k − 1 in (E.34), we obtain that

limt→0 v
k
t (x)

⊤
(
Ak−1

t (x) +Bt(x)
)−1

vkt (x) is positive.

Finally limt→0∇xy
∗
t (x) exists since

∇xy
∗
t (x) = (Ak

t (x) +Bt(x))
−1(Ct(x) +Dt(x))

and we proved the convergence of the two parts in the above two steps.

The following two lemmas are used in the proof of Lemma E.7.

Lemma E.5. For a family of vector-valued function {ft(x)}t∈R+ defined on a compact set U , if
ft(x) point-wisely, but not uniformly, converges to f(x) when t goes to 0, then there exists a sequence
{(xj , tj)}∞j=1 such that xj converges to x̂ and tj converges to 0 but limj→∞ ftj (xj) does not exist.

Proof. By ϵ-δ Language, ft(x) does not converges to f(x) uniformly means there exists a constant
ϵ0 such that for any T , there exists a point x and t1, t2 ≤ T satisfying ∥ft1(x)− ft2(x)∥ ≥ ϵ0. We
construct the sequence (tj , xj) as follows:

• For any j ≥ 1, set Tj = 1/j. There exists t′j,1, t
′
j,2 ≤ Tj and a point x′j such that

∥ft′j,1(x
′
j)− ft′j,2(x

′
j)∥ ≥ ϵ0;

• Since U is compact, choose a subsequence of {(x′j , t′j,1, t′j,2)}∞j=1, still denoted as {(x′j , t′j,1, t′j,2)}∞j=1,
such that limj→∞ x′j = x̂ for some point x̂;

• For any j ≥ 1, set x2j−1 = x2j = x′j and t2j−1 = t′j,1, t2j = t′j,2. Then we have

∥ft2j−1(x2j−1)− ft2j (x2j)∥ ≥ ϵ0, ∀j ≥ 1. (E.37)
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It is not hard to see that limj→∞ xj = limj→∞ x′j = x̂j . However, {ftj (xj)}∞j=1 is not a Cauchy
sequence by (E.37). We conclude that limj→∞ ftj (xj) does not exist.

Lemma E.6. Suppose {ft(x)}t∈R+ is a family of matrix-valued functions defined on U . If ft(x)
uniformly converges to a continuous function f(x), and {(xj , tj)}∞j=1 is a sequence such that
limj→∞ tj = 0 and limj→∞ xj = x̂ for some x̂, then limj→∞ ftj (xj) = f(x̂).

Proof. By uniformly convergence, for any ϵ/2 > 0, there exists T such that ∥ft(x)− f(x)∥ ≤ ϵ/2
for any 0 < t ≤ T and x ∈ U . Since limj→∞ tj = 0, we can find J1 such that tj ≤ T for any j ≥ J1.
Note that f(x) is continuous, for any ϵ/2 > 0, there exists δ such that ∥f(x)− f(x̂)∥ ≤ ϵ/2 for any
x satisfies ∥x− x̂∥ ≤ δ. According to limj→∞ xj = x̂, there exists T2 such that ∥xj − x̂∥ ≤ δ for any
0 < t ≤ T2. To conclude, for any ϵ > 0, we can find J = max{J1, J2} such that for any j ≥ J we
have

∥ftj (xj)− f(x̂)∥ ≤ ∥ftj (xj)− f(xj)∥+ ∥f(xj)− f(x̂)∥ ≤ ϵ

2
+

ϵ

2
= ϵ.

The proof is complete.

Lemma E.7. Suppose Assumption 3.1 and Assumption 3.2 hold, and x is an SCSC point. Then
there exists a compact neighborhood U of x such that ∇xy

∗
t (x) converges uniformly in U . Compact

neighborhood is a compact set containing an open ball centered at x.

Proof. We fix an SCSC point x0 and prove this result at this point. We select a compact
neighborhood U of x0 satisfying the following properties:

• The active index set for any point in U is the same as that of x0, and λi(x) > 0 for each active
index as long as U is small enough, because λi(x) is continuous, and x0 is an SCSC point;

• There exists H > 0 such that the inequality hi(x, y
∗(x)) ≤ −H < 0 holds for any inactive

index i and any x in U . This can be satisfied when H and U are small enough because λi(x),
hi(x, y

∗(x)) are continuous in x, and x0 is an SCSC point;

• There exists a constant T such that the vectors ∇yhi(x, y
∗
t (x)), where i ∈ {1, ..., k} ∩ I∗(x0),

are linear independent for any 0 < t ≤ T . This because the LICQ assumption is satisfied at
point (x, y∗(x)) and ∇yhi(x, y

∗
t (x)) converges to ∇yhi(x, y

∗(x)) uniformly by lemma E.3.

Using the notation in lemma E.4, we have

∇xy
∗
t (x) = (Ak

t (x) +Bt(x))
−1(Ct(x) +Dt(x)).

To prove ∇xy
∗
t (x) uniformly converges in U , it is sufficient to prove that

(
Ak

t (x) +Bt(x)
)−1

Ct(x)
and (At(x) +Bt(x))

−1Dt(x) converge uniformly in U separately.
Before detailed proof, we give the following uniform convergence which can all be directly

obtained from Lemma B.1 and E.3, i.e. y∗t (x) converges to y∗(x) uniformly, and t/(−hi(x, y
∗
t (x)))

converges to λi(x) uniformly

lim
t→0

vjt (x) = lim
t→0

t

−hj(x, y∗t (x))
∇yhj(x, y

∗
t (x)) = λj(x)∇yhj(x, y

∗(x)); (E.38)

lim
t→0

Bt(x) = lim
t→0

∇2
yyg(x, y

∗
t (x)) +

k∑
i=1

t

−hj(x, y∗t (x))
∇2

yyhi(x, y
∗
t (x))
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= ∇2
yyg(x, y

∗(x)) +
k∑

i=1

λi(x)∇2
yyhi(x, y

∗(x)); (E.39)

lim
t→0

Ct(x) = lim
t→0

∇2
yxg(x, y

∗
t (x)) +

k∑
i=1

t

−hj(x, y∗t (x))
∇2

yxhi(x, y
∗
t (x))

= ∇2
yxg(x, y

∗(x)) +

k∑
i=1

λi(x)∇2
yxhi(x, y

∗(x)). (E.40)

Step 1: We will prove
(
Ak

t (x) +Bt(x)
)−1

Ct(x) converges uniformly in U by contradiction. If it
does not uniformly converge, we will identify a subsequence (xj , tj) such that xj converges to x̂ ∈ U ,

and tj converges to 0, but
(
Ak

tj (xj) +Btj (xj)
)−1

Ctj (xj) does not converge to B̃(x̂)(C(x̂)), where

B̃ is defined in (E.33). However, we will show that for that kind of sequence, we can always have

limj→∞

(
Ak

tj (xj) +Btj (xj)
)−1

Ctj (xj) = B̃(x̂)(C(x̂)), which leads a contradiction.

Denoting Ct(x) := [Ct,1(x), ..., Ct,n(x)]. Note that(
Ak

t (x) +Bt(x)
)−1

Ct(x) =

[(
Ak

t (x) +Bt(x)
)−1

Ct,1(x), · · · ,
(
Ak

t (x) +Bt(x)
)−1

Ct,n(x)

]
,

it is sufficient to prove that limt→0

(
Ak

t (x) +Bt(x)
)−1

Ct,i(x) converges uniformly for any i. Since
Ct(x) converges uniformly by (E.40), we denote Ci(x) := limt→0Ct,i(x).

By our design of U , the active index set I∗(x) = I∗(x0) remains unchanged for any x in U .

According to (E.33) in the proof of Lemma E.4, we know limt→0

(
Ak

t (x) +Bt(x)
)−1

Ci(x) can be
computed as follows:

lim
t→0

(
Ak

t (x) +Bt(x)
)−1

Ci(x) = B̃(x)(Ci(x)) =

{
0 if Ci(x) ∈ V k(x0)

B(x)−1(Ci(x)) if Ci(x) ∈
(
V k(x0)

)⊥
.

Now we prove that
(
Ak

t (x) +Bt(x)
)−1

Ct,i(x) converges to B̃(x)(Ci(x)) uniformly for any i. If this
does not hold for some i, by Lemma E.5, there exists a sequence {(xj , tj)}∞j=1 such that 0 < tj ≤ T
for any j, and limj→∞ tj = 0, limj→∞ xj = x̂ for some point x̂ ∈ U , but

lim
t→0

(
Ak

tj (xj) +Btj (xj)
)−1

Ctj ,i(xj)

does not exist. We will demonstrate that
(
Ak

tj (xj) +Btj (xj)
)−1

Ctj ,i(xj) has a uniform bound for

j so that we can find a subsequence, still denoted as {(xj , tj)}∞j=1, such that

lim
j→∞

(
Ak

tj (xj) +Btj (xj)
)−1

Ctj ,i(xj) (E.41)

exists but not equal B̃(x̂)(Ci(x̂)). Then we will show that the limit of (E.41) must be B̃(x̂)(Ci(x̂)),
induces a contradiction.

Note that
Ak

tj (xj) +Btj (xj) ⪰ Btj (xj) ⪰ ∇2
yyg(xj , y

∗
tj (xj))

and g(x, y) is µg-strongly convex. Thus, we have(
Ak

tj (xj) +Btj (xj)
)−1

⪯ 1

µg
I
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is uniformly bounded. Note that Ct,i(x) converges to Ci(x) uniformly, Ct,i(x) can be seen as a
continuous map defined on [0, T ]×X . Therefore, Ct,i(x) also has a uniform bound for any t and x.

Therefore,
(
Ak

tj (xj) +Btj (xj)
)−1

Ctj ,i(xj) has a uniform bound for any j.

We choose a subsequence, still denoted as {(xj , tj)}∞j=1, such that

lim
j→∞

wtj (xj) := lim
j→∞

(
Ak

tj (xj) +Btj (xj)
)−1

Ctj ,i(xj) = w

but w ̸= B̃(x̂)(Ci(x̂)).
Decompose Ctj ,i(xj) = Ĉj + Ĉ⊥

j and wtj (xj) = ŵj + ŵ⊥
j , where Ĉj , ŵj ∈ V k

tj (xj) and Ĉ⊥
j ,

ŵ⊥
j ∈

(
V k
tj (xj)

)⊥
. Here by notation given in (E.24)

V j
t (x) = span{ t

−hi(x, y∗t (x))
∇yhi(x, y

∗
t (x)) : i ∈ {1, ..., j} ∩ I∗(x)}

is from (E.24). We want to show that Ĉj , Ĉ
⊥
j , ŵj and ŵ⊥

j all converges when j goes to infinity.
Note that

Ĉj = projV k
tj
(xj)

Ctj ,i(xj)

= Ftj (xj)
(
Ftj (xj)

⊤Ftj (xj)
)−1

Ftj (xj)
⊤Ctj ,i(xj)

where Ftj (xj) is the matrix with columns as the vectors vitj (xj) = (tj/(−hi(xj , y
∗
tj (xj))))∇yhi(xj , y

∗
tj (xj))

for i ∈ I∗(x). Since we have the uniform convergence by (E.40), and clearly Ci(x) is continuous in
x, by Lemma E.6, we get limj→∞Ctj ,i(xj) = Ĉi(x̂). It is sufficient to prove

Ftj (xj)
(
Ftj (xj)

⊤Ftj (xj)
)−1

Ftj (xj)
⊤

also converges. According to (E.38), we know vit(x) converges to λi(x)∇yhi(x, y
∗(x)) uniformly. Note

that λi(x)∇yhi(x, y
∗(x)) is continuous in x. By Lemma E.6, limj→∞ vitj (xj) = vi(x̂). This implies

limj→∞ Ftj (xj) = F (x̂) where F (x̂) is the matrix with columns as the vectors λi(x̂)∇yhi(x̂, y
∗(x̂)) for

i ∈ I∗(x). By LICQ assumption F (x̂)⊤F (x̂) is invertible, we obtain Ftj (xj)
(
Ftj (xj)

⊤Ftj (xj)
)−1

Ftj (xj)
⊤

converges to F (x̂)
(
F (x̂)⊤F (x̂)

)−1
F (x̂)⊤ when j goes to infinity. Therefore,

lim
j→∞

Ĉj = lim
j→∞

(
projV k

tj
(xj)

Ctj ,i(xj)

)
= lim

j→∞

(
Ftj (xj)

(
Ftj (xj)

⊤Ftj (xj)
)−1

Ftj (xj)
⊤Ctj ,i(xj)

)
= lim

j→∞

(
Ftj (xj)

(
Ftj (xj)

⊤Ftj (xj)
)−1

Ftj (xj)
⊤
)
· lim
j→∞

(
Ctj ,i(xj)

)
= F (x̂)

(
F (x̂)⊤F (x̂)

)−1
F (x̂)⊤Ci(x̂)

= projV k(x̂)Ci(x̂)

=: Ĉ.

By the same method, limj→∞ ŵj =: ŵ, limj→∞ Ĉ⊥
j =: Ĉ⊥ = Ci(x̂)− Ĉ, and limj→∞w⊥

j =: ŵ⊥ =
w − ŵ all exist.
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Next, we will show that

lim
j→∞

(
Ak

tj (xj) +Btj (xj)
)−1

(Ctj ,i(xj)) = lim
j→∞

wtj (xj) = B̃(x̂)(Ci(x̂)),

to contradict our assumption that

lim
j→∞

(
Ak

tj (xj) +Btj (xj)
)−1

(Ctj ,i(xj)) ̸= B̃(x̂)(Ci(x̂)).

Note that

Ĉj + Ĉ⊥
j = Ctj ,i(xj)

=
(
Ak

tj (xj) +Btj (xj)
)
wtj (xj)

=
(
Ak

tj (xj) +Btj (xj)
)(

wj + w⊥
j +
)

= Ak
tj (xj)ŵj +Ak

tj (xj)ŵj
⊥ +Btj (xj)ŵj +Btj (xj)ŵ

⊥
j .

Similar to the proof of Lemma E.4, we will prove the following three results:

1. Claim: limj→∞Ak
tj (xj)ŵ

⊥
j = 0.

Proof. This is because

lim
j→∞

Ak
tj (xj)ŵ

⊥
j = lim

j→∞

k∑
i=1

1

t
vitj (xj)v

i
tj (xj)

⊤
ŵ⊥
j

(i)
= lim

j→∞

∑
i∈{1,...,k}\I∗(x0)

1

t
vitj (xj)v

i
tj (xj)

⊤
ŵ⊥
j

= lim
j→∞

∑
i∈{1,...,k}\I∗(x0)

t

h2i (xj , y
∗
tj
(xj))

∇yhi(xj , y
∗
tj (xj))∇yhi(xj , y

∗
tj (xj))

⊤ŵ⊥
j

(ii)
= 0,

where (i) is because vjtj (xj) ∈ V j
t (x), ŵ⊥

j ∈ (V j
t (x))

⊥, and then vjtj (xj)ŵ
⊥
j = 0 for any

i ∈ {1, ..., k} ∩ I∗(x0), and (ii) is because

lim
j→∞

(tj/h
2
i (xj , y

∗
tj (xj))) = ( lim

j→∞
tj)/h

2
i (x̂, y

∗(x̂)) ≤ 0/H2 = 0, ∀i /∈ I∗(x0).

Here H, we defined before, is the lower bound of −hi(x, y
∗(x)) with x in U and inactive index

i;

2. Claim: limj→∞ ŵj = 0.

Proof. We prove this by contradiction. If limj→∞ ŵj =: ζ ̸= 0, it must be that ζ ∈ V k(x̂)
since ŵj ∈ V k

tj (xj) for any j. Consequently,

lim
j→∞

∥Ak
tj (xj)ŵj∥

(i)
= lim

j→∞

∥∥∥∥∥∥
∑

i∈{1,...,k}∩I∗(x0)

1

tj
vitj (xj)v

i
tj (xj)

⊤
ŵj

∥∥∥∥∥∥ = ∞,

where (i) is because limj→∞(tj/h
2
i (xj , y

∗
tj (xj))) = 0 for any i /∈ I∗(x0) which we have proven

in the first Claim.
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By (E.39), we have Bt(x) converges to B(x) uniformly. Therefore, by the continuity of B(x) in
x and Lemma E.6, limj→∞Btj (xj) = B(x̂), implying that limj→∞ ∥Ak

tj (xj)ŵ
⊥
j +Btj (xj)ŵj +

Btj (xj)ŵ
⊥
j ∥ < ∞. Thus limj→∞ ∥Ak

tj (xj)ŵj + Ak
tj (xj)ŵ

⊥
j + Btj (xj)ŵj + Btj (xj)ŵ

⊥
j ∥ = ∞.

However, limj→∞ ∥Ĉj + Ĉ⊥
j ∥ = ∥Ci(x̂)∥ < ∞ since Ci(x) is a continuous map defined on X .

This induces the following contradiction

∞ > lim
j→∞

∥Ĉj + Ĉ⊥
j ∥ = lim

j→∞
∥Ak

tj (xj)ŵj +Ak
tj (xj)ŵ

⊥
j +Btj (xj)ŵj +Btj (xj)ŵ

⊥
j ∥ = ∞.

Therefore, we conclude limj→∞ ŵj = 0;

3. Claim: limj→∞Btj (xj)ŵj = 0.

Proof. Note that limj→∞Btj (xj) = B(x̂) and limj→∞ ŵj = 0, we can directly get limj→∞Btj (xj)ŵj =
0.

Given that Ak
tj (xj)ŵj ∈ V k

tj (xj) for any j, we can obtain

Ĉ⊥ = lim
j→∞

Ĉ⊥
j

= lim
j→∞

proj(
V k
tj
(xj)

)⊥

(
Ak

tj (xj)ŵj +Ak
tj (xj)ŵ

⊥
j +Btj (xj)ŵj +Btj (xj)ŵ

⊥
j

)
= proj

(V k(x̂))
⊥

(
B(x̂)ŵ⊥

)
,

where x̂ is the limit of xj . It follows that

lim
j→∞

(
Ak

tj (xj) +Btj (xj)
)−1

(Ctj ,i(xj)) = lim
j→∞

wtj (xj) = lim
j→∞

ŵj + ŵ⊥
j = ŵ⊥ = B̃(x̂)(Ci(x̂)).

This contradicts our assumption that

lim
j→∞

(
Ak

tj (xj) +Btj (xj)
)−1

(Ctj ,i(xj)) ̸= B̃(x̂)(Ci(x̂)).

So we proved the first part that
(
Ak

t (x) +Bt(x)
)−1

Ct(x) converges uniformly.

Step 2: Now we prove the second part that (At(x) +Bt(x))
−1Dt(x) converges uniformly. Recall

that

Dt(x) =
k∑

i=1

1

t

t2

h2i (x, y
∗
t (x))

∇yhi(x, y
∗
t (x)) (∇xhi(x, y

∗
t (x)))

⊤ .

We can obtain the uniform convergence of (t/(−hi(x, y
∗
t (x)))) (∇xhi(x, y

∗
t (x)))

⊤ similar to (E.38).
(At(x) +Bt(x))

−1Dt(x) can be rewritten as(
Ak

t (x) +Bt(x)
)−1

Dt(x)

=

(
(Ak

t (x) +Bt(x))
−1 1

t

t

−hj(x, y∗t (x))
∇yhj(x, y

∗
t (x))

)(
t

−hj(x, y∗t (x))
∇xhi(x, y

∗
t (x))

)⊤

Then it is sufficient to prove that

(Ak
t (x) +Bt(x))

−1 1

t

t

−hj(x, y∗t (x))
∇yhj(x, y

∗
t (x))
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converges uniformly for any j. Without loss of generality, in the following proof, we only consider
the case j = k. Otherwise, simply swap the positions of the j-th and k-th constraints.

If k is an inactive index, by the assumption at the beginning that hk(x, y
∗(x)) ≤ −H, we have

1

t

t

−hk(x, y
∗
t (x))

∇yhk(x, y
∗
t (x)) =

1

−hk(x, y
∗
t (x))

∇yhk(x, y
∗
t (x))

converges to (1/(−hk(x, y
∗(x))))∇yhk(x, y

∗(x)) uniformly. We can obtain the uniform convergence
of the following term

(Ak
t (x) +Bt(x))

−1 1

t

t

−hk(x, y
∗
t (x))

∇yhk(x, y
∗
t (x))

by replacing Ct,i(x) with (1/(−hk(x, y
∗
t (x))))∇yhk(x, y

∗
t (x)) in Step 1,

If k is an active index, following (E.36) in the proof of lemma E.4, we have

(Ak
t (x) +Bt(x))

−1 1

t

t

−hk(x, y
∗
t (x))

∇yhk(x, y
∗
t (x))

=

(
Ak−1

t (x) +Bt(x)
)−1

vkt (x)

t+ vkt (x)
⊤
(
Ak−1

t (x) +Bt(x)
)−1

vkt (x)
,

where we define vkt (x) in (E.22) as

vkt (x) =
t

−hk(x, y
∗
t (x))

∇yhk(x, y
∗
t (x)).

We just need to prove
(
Ak−1

t (x) +Bt(x)
)−1

vkt (x) converges uniformly, and

lim
t→0

vkt (x)
⊤ (

Ak−1
t (x) +Bt(x)

)−1
vkt (x) ̸= 0

for any x in U . The first result has already been proven in Step 1 just by replacing k with k − 1
and Ct,i(x) with vkt (x). The second result has also been proven in (E.34) by replacing j̃ with k − 1.

To conclude, we proved that ∇xy
∗
t (x) converges uniformly in U .

Next, we prove the relation of Jacobians under the strongly convex setting when t approaches 0.
Proof of Theorem 3.4: We fix an SCSC point x0 and prove this theorem at this point. It is

sufficient to prove that limt→0
∂(y∗t (x))i

∂xj
=

∂(y∗(x))i
∂xj

at SCSC point x0 for any i, j. By Lemma B.1,

we have y∗t (x0) converges to y∗(x0), and by Lemma E.7 there exists a neighborhood U of x0 such
that ∇xy

∗
t (x) converges uniformly in U , we can interchange the order of limit and derivatives

lim
t→0

∂ (y∗t (x0))i
∂xj

=
∂ limt→0 (y

∗
t (x0))i

∂xj
=

∂ (y∗(x0))i
∂xj

.

Therefore, we completed the proof.
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F Convergence Analysis of Algorithms

F.1 Proof of Proposition 4.1

Through directly computing the Hessian, we get

∇2
yy g̃t(x, y) = ∇2

yyg(x, y) + t

k∑
i=1

(
∇2

yyhi(x, y)

−hi(x, y)
+

∇yhi(x, y)∇yhi(x, y)
⊤

h2i (x, y)

)
.

If g(x, y) is µg-strongly convex in y, then

∇2
yy g̃t(x, y) ⪰ µgI,

which means g̃t(x, y) is µg-strongly convex.
If hi(x, y) are linear in y for any i, define A(x) = (∇yh1(x, y), · · · ,∇yhk(x, y)). In the proof

in Proposition 3.1, we have proven that A(x)A(x)⊤ is positive for any x. The smallest eigenvalue
σ(x) is continuous depends on x, then we obtain that σ = minx∈X σ(x) > 0. It is also easy to see
H = supi∈{1,...,k},x∈X ,y∈Yx

−hi(x, y) < ∞. Therefore

∇2
yy g̃t(x, y) ⪰ t

k∑
i=1

∇yhi(x, y)∇yhi(x, y)
⊤

h2i (x, y)

⪰ t

∑k
i=1∇yhi(x, y)∇yhi(x, y)

⊤

H2

= t
A(x)⊤A(x)

H2

⪰ t
σ

H2
I

which means g̃t(x, y) is t
σ
H2 -strongly convex.

F.2 Proof of Theorem 4.1

Denote y = argminy∈Y(x){maxi∈{1,...,k} hi(x, y)}. From our assumption

arg min
y∈Y(x)

{ max
i∈{1,...,k}

hi(x, y)} ≤ −d,

it is clear that hi(x, y) ≤ −d for any i. Our main idea of the proof is to reduce the problem to a
one-dimensional case.

If y∗t (x) = y, then let m = d. Then we directly have hi(x, y
∗
t (x)) ≤ −d for any i.

If y∗t (x) ̸= y. Consider the line ys = y + sv, where v =
y∗t (x)−y

∥y∗t (x)−y∥ and define

g̃x(s) := g̃t(x, ys)

= g(x, y + sv)− t
k∑

i=1

log (−hi(x, y + sv)) .

It is not hard to see s∗ := ∥y∗t (x) − y∥ is the minimizer of g̃x(s). We evaluate the bound of
hj(x, y

∗
t (x)) for any index j based on the range of values for d

dvhj(x, y)|y=ys∗ , where
d
dvhj(x, y)|y=ys∗

is the directional derivative of hj(x, ·) along direction v at point ys∗ .
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Case 1: If d
dvhj(x, y)|y=ys∗ ≤ 0, by convexity of hj(x, ys) in s, d

dvhj(x, y)|y=ys is monotonically

increasing in s, thus we can get d
dvhj(x, y)|y=ys ≤ 0 for any s ∈ [0, s∗]. Therefore, we have

hj(x, ys∗)− hj(x, y) =

∫ s∗

0

d

ds
hj(x, y + sv)ds ≤ 0,

implying hj(x, ys∗) ≤ hj(x, y) ≤ −d.
Case 2: If 0 < d

dvhj(x, y)|y=ys∗ ≤ d
4R , where R is from Assumption 4.3(3), denote s∗j =

argmin{s:ys∈Y(x)} hj(x, ys). From the convexity of hj(x, ys) in s, we know s∗ ≥ s∗j . Otherwise,

by convexity of hj(x, ys) in s, d
dvhj(x, y)|y=ys is monotonically increasing in s, d

dvhj(x, y)|y=ys ≥ 0
for any s ∈ [s∗, s∗j ], implying hj(x, ys∗) ≤ hj(x, ys∗j ). This contradicts s

∗
j = argmin{s:ys∈Y(x)} hj(x, ys).

Therefore, we obtain

hj(x, ys∗)− hj(x, ys∗j ) =

∫ s∗

s∗j

d

ds
hj(x, y + sv)ds

(i)

≤ (s∗ − s∗j )
d

dv
hj(x, y)|y=ys∗

(ii)

≤ d

2
.

In (i) we used the result that d
dshj(x, y + sv) ≤ d

dvhj(x, y)|y=ys∗ for any s∗j ≤ s ≤ s∗. This is

because, by convexity of hj(x, ys) in s, d
dvhj(x, y)|y=ys is monotonically increasing in s. In (ii)

we use the fact that s∗ − s∗j ≤ 2R from Assumption 4.3(3) and d
dvhj(x, y)|y=ys∗ ≤ d

4R . Note that

hj(x, ys∗j ) ≤ hj(x, y) ≤ −d, we have hj(x, y
∗
t (x)) = hj(x, ys∗) ≤ −d

2 .

Case 3: If d
4R < d

dvhj(x, y)|y=ys∗ , we divide the index set I = {1, ..., k} into two subsets, I1 =

{i1 ∈ I : d
dvhi1(x, y)|y=ys∗ > 0} and I2 = {i2 ∈ I : d

dvhi2(x, y)|y=ys∗ ≤ 0}. Note that the optimality

condition of g̃x(s) is
d
ds g̃x(s)|s=s∗ = 0, which can be expressed as

d

dv
g(x, y)|y=ys∗ + t

k∑
i=1

d
dvhi(x, y)|y=ys∗

−hi(x, ys∗)
= 0. (F.1)

Rearranging the terms of (F.1), note that −hj(x, ys∗) = −hj(x, y
∗
t (x)) > 0, we obtain

td

−4Rhj(x, ys∗)
< t

d
dvhj(x, y)|y=ys∗

−hj(x, ys∗)
= − d

dv
g(x, y)|y=ys∗ − t

∑
i∈I\{j}

d
dvhi(x, y)|y=ys∗

−hi(x, ys∗)

(i)

≤ Lg − t
∑

i1∈I1\{j}

d
dvhi1(x, y)|y=ys∗

−hi1(x, ys∗)
− t

∑
i2∈I2\{j}

d
dvhi2(x, y)|y=ys∗

−hi2(x, ys∗)

(ii)

≤ Lg − t
∑

i2∈I2\{j}

d
dvhi2(x, y)|y=ys∗

−hi2(x, ys∗)

(iii)

≤ Lg +
tkLh

d
.

In (i) we utilize − d
dvg(x, y)|y=ys∗ ≤ Lg by Assumption 4.4(3). (ii) is due to

−t
∑

i1∈I1\{j}

d
dvhi1(x, y)|y=ys∗

−hi1(x, ys∗)
≤ 0.

In (iii) we use the fact that I2 is designed such that for all i2 ∈ I2, Case 1 is satisfied, so
−hi2(x, ys∗) ≤ d; further we have used the fact that for i2 ∈ I2, 0 < − d

dvhi2(x, y)|y=ys∗ ≤ Lh where
the second inequality comes from Assumption 4.4(6). Note that t ≤ T , we have

hj(x, ys∗) ≤ −t
d2

4dRLg + 4RTkLh
.
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To conclude, the following holds for any j

hj(x, ys∗) ≤ −min{t d2

4dRLg + 4RTkLh
,
d

2
}.

It is noteworthy that we do not need the convexity of g(x, y) and g̃t(x, y) in this proof.

F.3 Proof of Proposition 4.2

Through directly computing the Hessian, we get

∇2
yy g̃t(x, y) = ∇2

yyg(x, y) + t
k∑

i=1

(
∇2

yyhi(x, y)

−hi(x, y)
+

∇yhi(x, y)∇yhi(x, y)
⊤

h2i (x, y)

)
.

Note that we only consider y ∈ Ym(x), i.e. hi(x, y) ≤ −m for any i. Therefore, we have the following
estimate ∥∥∇2

yy g̃t(x, y)
∥∥ ≤

∥∥∇2
yyg(x, y)

∥∥+ t

k∑
i=1

(∥∥∇2
yyhi(x, y)

∥∥
−hi(x, y)

+
∥∇yhi(x, y)∥2

h2i (x, y)

)
(i)

≤ Lg +
tkLh

m
+

tkL2
h

m2
,

where (i) is from the assumption that hi(x, y) ≤ −m, and Assumption 4.4 that
∥∥∇2

yyg(x, y)
∥∥ ≤ Lg,∥∥∇2

yyhi(x, y)
∥∥ ≤ Lh and ∥∇yhi(x, y)∥ ≤ Lh for any i.

F.4 Proof of Lemma 4.1

By direct computing∥∥∇2
yy g̃t(x1, y1)−∇2

yy g̃t(x2, y2)
∥∥

=

∥∥∥∥∥∇2
yyg(x1, y1) + t

k∑
i=1

(
∇2

yyhi(x1, y1)

−hi(x1, y1)
+

∇yhi(x1, y1)∇yhi(x1, y1)
⊤

h2i (x1, y1)

)

−

(
∇2

yyg(x2, y2) + t

k∑
i=1

(
∇2

yyhi(x2, y2)

−hi(x2, y2)
+

∇yhi(x2, y2)∇yhi(x2, y2)
⊤

h2i (x2, y2)

))∥∥∥∥∥
=

∥∥∥∥∥(∇2
yyg(x1, y1)−∇2

yyg(x2, y2)) + t
k∑

i=1

(
∇2

yyhi(x1, y1)

−hi(x1, y1)
−

∇2
yyhi(x2, y2)

−hi(x2, y2)

)

+t
k∑

i=1

(
∇yhi(x1, y1)∇yhi(x1, y1)

⊤

h2i (x1, y1)
− ∇yhi(x2, y2)∇yhi(x2, y2)

⊤

h2i (x2, y2)

)∥∥∥∥∥
=

∥∥∥∥∥(∇2
yyg(x1, y1)−∇2

yyg(x2, y2)) + t

k∑
i=1

hi(x1, y1)∇2
yyhi(x2, y2)− hi(x2, y2)∇2

yyhi(x1, y1)

hi(x1, y1)hi(x2, y2)

+t
k∑

i=1

h2i (x2, y2)∇yhi(x1, y1)∇yhi(x1, y1)
⊤ − h2i (x1, y1)∇yhi(x2, y2)∇yhi(x2, y2)

⊤

h2i (x1, y1)h
2
i (x2, y2)

∥∥∥∥∥ . (F.2)

We estimate three terms of (F.2) separately. For the first term, we utilize Assumption 4.4(5)
and obtain ∥∥∇2

yyg(x1, y1)−∇2
yyg(x2, y2)

∥∥ ≤ Lg∥(x1, y1)− (x2, y2)∥.
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For the second, we have∥∥∥∥∥t
k∑

i=1

hi(x1, y1)∇2
yyhi(x2, y2)− hi(x2, y2)∇2

yyhi(x1, y1)

hi(x1, y1)hi(x2, y2)

∥∥∥∥∥
≤t

k∑
i=1

∥∥∥∥∥hi(x1, y1)∇2
yyhi(x2, y2)− hi(x2, y2)∇2

yyhi(x1, y1)

hi(x1, y1)hi(x2, y2)

∥∥∥∥∥
=t

k∑
i=1

∥∥∥∥∥hi(x1, y1)∇2
yyhi(x2, y2)− hi(x1, y1)∇2

yyhi(x1, y1) + hi(x1, y1)∇2
yyhi(x1, y1)− hi(x2, y2)∇2

yyhi(x1, y1)

hi(x1, y1)hi(x2, y2)

∥∥∥∥∥
≤t

k∑
i=1

(∥∥∥∥∥∇2
yyhi(x2, y2)−∇2

yyhi(x1, y1)

hi(x2, y2)

∥∥∥∥∥+
∥∥∥∥∥∇2

yyhi(x1, y1) (hi(x1, y1)− hi(x2, y2))

hi(x1, y1)hi(x2, y2)

∥∥∥∥∥
)

(i)

≤tk

(
Lh

m
+

LhLh

m2

)
∥(x1, y1)− (x2, y2)∥, (F.3)

where (i) is because hi(x1, y1), hi(x2, y2) ≤ −m, ∥∇2
yyhi(x2, y2)−∇2

yyhi(x1, y1)∥ ≤ Lh∥(x1, y1)−
(x2, y2)∥, ∥∇2

yyhi(x1, y1)∥ ≤ Lh, and |hi(x1, y1)− hi(x2, y2)| ≤ Lh∥(x1, y1)− (x2, y2)∥.
For the final term, we have∥∥∥∥∥t

k∑
i=1

h2i (x2, y2)∇yhi(x1, y1)∇yhi(x1, y1)
⊤ − h2i (x1, y1)∇yhi(x2, y2)∇yhi(x2, y2)

⊤

h2i (x1, y1)h
2
i (x2, y2)

∥∥∥∥∥
≤t

k∑
i=1

∥∥∥∥h2i (x2, y2)∇yhi(x1, y1)∇yhi(x1, y1)
⊤ − h2i (x1, y1)∇yhi(x2, y2)∇yhi(x2, y2)

⊤

h2i (x1, y1)h
2
i (x2, y2)

∥∥∥∥
=t

k∑
i=1

(∥∥∥∥h2i (x2, y2)∇yhi(x1, y1)∇yhi(x1, y1)
⊤ − h2i (x1, y1)∇yhi(x1, y1)∇yhi(x1, y1)

⊤

h2i (x1, y1)h
2
i (x2, y2)

∥∥∥∥
+

∥∥∥∥h2i (x1, y1)∇yhi(x1, y1)∇yhi(x1, y1)
⊤ − h2i (x1, y1)∇yhi(x1, y1)∇yhi(x2, y2)

⊤

h2i (x1, y1)h
2
i (x2, y2)

∥∥∥∥
+

∥∥∥∥h2i (x1, y1)∇yhi(x1, y1)∇yhi(x2, y2)
⊤ − h2i (x1, y1)∇yhi(x2, y2)∇yhi(x2, y2)

⊤

h2i (x1, y1)h
2
i (x2, y2)

∥∥∥∥) (F.4)

(i)

≤
(
2tk

L3
h

m3
+ 2tk

LhLh

m2

)
∥(x1, y1)− (x2, y2)∥.

In (i), when evaluating the first term, we use the following estimate∥∥∥∥h2i (x2, y2)∇yhi(x1, y1)∇yhi(x1, y1)
⊤ − h2i (x1, y1)∇yhi(x1, y1)∇yhi(x1, y1)

⊤

h2i (x1, y1)h
2
i (x2, y2)

∥∥∥∥
=

∥∥∥∥(hi(x2, y2) + hi(x1, y1))(hi(x2, y2)− hi(x1, y1))∇yhi(x1, y1)∇yhi(x1, y1)
⊤

h2i (x1, y1)h
2
i (x2, y2)

∥∥∥∥
=

∥∥∥∥(hi(x2, y2)− hi(x1, y1))∇yhi(x1, y1)∇yhi(x1, y1)
⊤

h2i (x1, y1)hi(x2, y2)
+

(hi(x2, y2)− hi(x1, y1))∇yhi(x1, y1)∇yhi(x1, y1)
⊤

hi(x1, y1)h2i (x2, y2)

∥∥∥∥
≤2tk

L3
h

m3
∥(x1, y1)− (x2, y2)∥.

In conclusion, we have
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∥∥∇2
yy g̃t(x1, y1)−∇2

yy g̃t(x2, y2)
∥∥

≤

(
Lg + tk

(
Lh

m
+

LhLh

m2
+

2L3
h

m3
+

2LhLh

m2

))
∥(x1, y1)− (x2, y2)∥.

We can also derive that ∥∇2
xy g̃t(x1, y1) −∇2

xy g̃t(x2, y2)∥ ≤ Lg̃t,m∥(x1, y1) − (x2, y2)∥ using the
same process.

F.5 Proof of Lemma 4.2

By Assumption 4.4(6), i.e. the Lipschitz continuity of hi(x, y), we have hi(x+∆x, y) ≤ −d
2 for any

i and x+∆x, where ∥∆x∥ ≤ d
2Lh

. This implies miny∈Y(x){maxi∈{1,...,k} hi(x+∆x, y)}} ≤ −d
2 for

any point in the ball Bx(
d

2Lh
). According to Theorem 4.1, we know hi(x +∆x, y∗t (x +∆x)) has

a local upper bound denoted as −mloc in the ball Bx(
d

2Lh
). mloc can be computed by replacing d

with d
2 in Theorem 4.1. This completes the first part of the proof.

Before proceeding with the proof, we provide the following estimate

∥∥∇2
yxg̃t(x, y)

∥∥ ≤
∥∥∇2

yxg(x, y)
∥∥+ t

k∑
i=1

(∥∥∇2
yxhi(x, y)

∥∥
−hi(x, y)

+
∥∇yhi(x, y)∥ ∥∇xhi(x, y)∥

h2i (x, y)

)

≤ Lg +
tkLh

mloc
+

tkL2
h

(mloc)
2 (F.5)

similar as the proof in Proposition 4.2.
By direct computation, for any x1, x2 in the ball Bx(

d
2Lh

), we have∥∥∥∇xϕ̃t(x1)−∇xϕ̃t(x2)
∥∥∥

=
∥∥∇xf(x1, y

∗
t (x1))−∇2

xy g̃t(x1, y
∗
t (x1))(∇2

yy g̃t(x1, y
∗
t (x1)))

−1∇yf(x1, y
∗
t (x1))

−∇xf(x2, y
∗
t (x2)) +∇2

xy g̃t(x2, y
∗
t (x2))(∇2

yy g̃t(x2, y
∗
t (x2)))

−1∇yf(x2, y
∗
t (x2))

∥∥
≤∥(∇xf(x1, y

∗
t (x1))−∇xf(x2, y

∗
t (x2)))∥

+
∥∥∇2

xy g̃t(x2, y
∗
t (x2))(∇2

yy g̃t(x2, y
∗
t (x2)))

−1(∇yf(x2, y
∗
t (x2))−∇yf(x1, y

∗
t (x1)))

∥∥
+
∥∥∇2

xy g̃t(x2, y
∗
t (x2))((∇2

yy g̃t(x2, y
∗
t (x2)))

−1 − (∇2
yy g̃t(x1, y

∗
t (x1)))

−1)∇yf(x1, y
∗
t (x1))

∥∥
+
∥∥(∇2

xy g̃t(x2, y
∗
t (x2))−∇2

xy g̃t(x1, y
∗
t (x1)))(∇2

yy g̃t(x1, y
∗
t (x1)))

−1∇yf(x1, y
∗
t (x1))

∥∥
(i)

≤

(
Lf + Lf

1

µg̃t

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

)
+ Lf

(
1

µg̃t

)2

Lg̃t,mloc

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

)
+ Lf

1

µg̃t

Lg̃t,mloc

)
× ∥(x1, y∗t (x1))− (x2, y

∗
t (x2))∥. (F.6)

In (i) we estimate ∥(∇2
yy g̃t(x2, y

∗
t (x2)))

−1 − (∇2
yy g̃t(x1, y

∗
t (x1)))

−1∥ using the following inequality

∥A−1 −B−1∥ = ∥A−1(A−B)B−1∥ ≤ ∥A−1∥ · ∥B−1∥ · ∥A−B∥,

and ∥(∇2
yy g̃t(x2, y

∗
t (x2)))

−1∥ ≤ 1/µg̃t from Proposition 4.1.
Now we need to bound ∥(x1, y∗t (x1))−(x2, y

∗
t (x2))∥. Note that ∥y∗t (x1)−y∗t (x2)∥ ≤ ∥∇xy

∗
t (x)∥loc∥x1−

x2∥, where ∥∇xy
∗
t (x)∥loc is the upper bound of norm of the Jacobian in the ball Bx(

d
2Lh

). We need
to evaluate ∥∇xy

∗
t (x)∥loc. By optimal condition of g̃t(x, y), we know ∇y g̃t(x, y

∗
t (x))=0. This implies

0 = ∇x(∇y g̃t(x, y
∗
t (x))) = ∇2

xy g̃t(x, y
∗
t (x)) + (∇xy

∗
t (x))

⊤∇2
yy g̃t(x, y

∗
t (x)).
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This following

∥∇xy
∗
t (x)∥ =∥∇2

xy g̃t(x, y)(∇2
yy g̃t(x, y))

−1∥
=∥∇2

xy g̃t(x, y)∥∥∇2
yy g̃t(x, y)∥−1

(i)

≤ 1

µg̃t

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

)
,

where in (i) we use ∥(∇2
yy g̃t(x2, y

∗
t (x2)))

−1∥ ≤ 1/µg̃t and

∥∥∇2
yxg̃t(x, y)

∥∥ ≤ Lg +
tkLh

mloc
+

tkL2
h

(mloc)
2

Therefore, we obtain

∥y∗t (x1)− y∗t (x2)∥ ≤ 1

µg̃t

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

)
∥x1 − x2∥.

To conclude, we obtain

∥∇xϕ̃t(x1)−∇xϕ̃t(x2)∥

≤

(
Lf + Lf

1

µg̃t

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

)
+ Lf

(
1

µg̃t

)2

Lg̃t,mloc

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

)
+ Lf

1

µg̃t

Lg̃t,mloc

)
× ∥(x1, y∗t (x1))− (x2, y

∗
t (x2))∥

≤

(
Lf + Lf

1

µg̃t

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

)
+ Lf

(
1

µg̃t

)2

Lg̃t,mloc

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

)
+ Lf

1

µg̃t

Lg̃t,mloc

)

×
(
1 +

1

µg̃t

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

))
∥x1 − x2∥.

The proof is completed.

F.6 Proof of Lemma 4.3

Now we apply Lemma 4.2 to the reference point xs. Replacing d in Lemma 4.2 with ds, it follows
that for any x in the ball Bxs(ds/(2Lh)), we have hi(x, y

∗
t (x)) ≤ −mloc. As stated in the first

paragraph of proof in Lemma 4.2, the constant −mloc can be computed by replacing d in Theorem
4.1 with ds/2. Here we use the notation m(ds/2) := mloc to emphasize the dependency of m on
ds. Since the feasibility check must terminate when d is between D

2 to D, ds is greater than D/2
for any s. From Theorem 4.1, we know that m(d) is monotonically increasing with respect to d. It
follows that mloc = m(ds/2) ≥ m(D/4) =: M∗. Note that

Lg̃t,m = Lg + tk

(
Lh

m
+

LhLh

m2
+

2L3
h

m3
+

2LhLh

m2

)
,

which is monotonically decreasing with respect to m, we have Lg̃t,mloc ≤ Lg̃t,M∗ . Therefore, the
following holds
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L
loc
ϕ̃t

=

(
Lf + Lf

1

µg̃t

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

)
+ Lf

(
1

µg̃t

)2

Lg̃t,mloc

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

)
+ Lf

1

µg̃t

Lg̃t,mloc

)

×
(
1 +

1

µg̃t

(
Lg +

tkLh

mloc
+

tkL2
h

(mloc)2

))
≤

(
Lf + Lf

1

µg̃t

(
Lg +

tkLh

M∗ +
tkL2

h

(M∗)2

)
+ Lf

(
1

µg̃t

)2

Lg̃t,M∗

(
Lg +

tkLh

M∗ +
tkL2

h

(M∗)2

)
+ Lf

1

µg̃t

Lg̃t,M∗

)

×
(
1 +

1

µg̃t

(
Lg +

tkLh

M∗ +
tkL2

h

(M∗)2

))
=:L

ϕ̃t
.

By the design of m in Theorem 4.1, we have M∗ = m(D/4) = O(t). Note that

Lg̃t,M∗ = Lg + tk

(
Lh

M∗ +
LhLh

(M∗)2
+

2L3
h

(M∗)3
+

2LhLh

(M∗)2

)
= O(1/t2), (F.7)

we conclude L
ϕ̃t

= O(1/t4).

F.7 Proof of Lemma 4.4

According to Theorem 4.2, we have ∥y∗t (xs)− ŷs∥ ≤ ϵ. Note that hi(x, y
∗
t (x)) ≤ −ms and hi(x, ŷs) ≤

−ms for any i. By direct computation∥∥∥∇xϕ̃t(xs)− ∇̂xϕ̃t(xs)
∥∥∥

=
∥∥∇xf(xs, y

∗
t (xs))−∇2

xy g̃t(xs, y
∗
t (xs))(∇2

yy g̃t(xs, y
∗
t (xs)))

−1∇yf(xs, y
∗
t (xs))

−∇xf(xs, ŷs) +∇2
xy g̃t(xs, ŷs)(∇2

yy g̃t(xs, ŷs))
−1∇yf(xs, ŷs)

∥∥
≤∥(∇xf(xs, y

∗
t (x))−∇xf(xs, ŷs))∥

+
∥∥∇2

xy g̃t(xs, ŷs)(∇2
yy g̃t(xs, ŷs))

−1(∇yf(xs, ŷs)−∇yf(xs, y
∗
t (xs)))

∥∥
+
∥∥∇2

xy g̃t(xs, ŷs)((∇2
yy g̃t(xs, ŷs))

−1 − (∇2
yy g̃t(xs, y

∗
t (xs)))

−1)∇yf(xs, y
∗
t (xs))

∥∥
+
∥∥(∇2

xy g̃t(xs, ŷs)−∇2
xy g̃t(xs, y

∗
t (xs)))(∇2

yy g̃t(xs, ŷs))
−1∇yf(xs, y

∗
t (xs))

∥∥
≤

(
Lf + Lf

1

µg̃t

(
Lg +

tkLh

ms
+

tkL2
h

m2
s

)
+ Lf

(
1

µg̃t

)2

Lg̃t,ms

(
Lg +

tkLh

ms
+

tkL2
h

m2
s

)
+ Lf

1

µg̃t

Lg̃t,ms

)
× ∥(x, y∗t (xs))− (x, ŷs)∥

≤

(
Lf + Lf

1

µg̃t

(
Lg +

tkLh

ms
+

tkL2
h

m2
s

)
+ Lf

(
1

µg̃t

)2

Lg̃t,ms

(
Lg +

tkLh

ms
+

tkL2
h

m2
s

)
+ Lf

1

µg̃t

Lg̃t,ms

)
ϵs

=L
′
ϕ̃t,ms

ϵs. (F.8)

F.8 Proof of Theorem 4.3

Before proceeding, we establish the following result

Lemma F.1. The coefficient L
′
ϕ̃t,ms

defined in Lemma 4.4 has an upper bound

L
′
ϕ̃t

= Lf + Lf
1

µg̃t

(
Lg +

tkLh
M +

tkL2
h

M2

)
+ Lf

(
1

µg̃t

)2
Lg̃t,M

(
Lg +

tkLh
M +

tkL2
h

M2

)
+ Lf

1
µg̃t

Lg̃t,M .

Here M is from Corollary 4.1, and Lg̃t,M can be computed by replacing m from Lemma 4.1 with M .
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Proof. From Corollary 4.1, we have ms ≥ M . In view of Lemma 4.4, Lg̃t,m is monotonically

increases with respect to m, so Lg̃t,ms
≤ Lg̃t,M . Therefore, we obtain

L
′
ϕ̃t,ms

= Lf + Lf
1

µg̃t

(
Lg +

tkLh

ms
+

tkL2
h

m2
s

)
+ Lf

(
1

µg̃t

)2

Lg̃t,ms

(
Lg +

tkLh

ms
+

tkL2
h

m2
s

)
+ Lf

1

µg̃t

Lg̃t,ms

≤ Lf + Lf
1

µg̃t

(
Lg +

tkLh

M
+

tkL2
h

M2

)
+ Lf

(
1

µg̃t

)2

Lg̃t,M

(
Lg +

tkLh

M
+

tkL2
h

M2

)
+ Lf

1

µg̃t

Lg̃t,M

= L
′
ϕ̃t
.

This complete the proof.

Next, we provide the proof of Theorem 4.3. For any point xs ∈ X , the lower-level algorithm will
guarantee (by Theorem 4.2):

∥ŷs − y∗t (xs)∥ ≤ ϵs (F.9)

within O(κ log(1/ϵs)) numbers of lower-level gradient oracles, where ŷs is the output of the lower-

level algorithm. According to Lemma 4.4, 1/ϵs = 4L
′
ϕ̃t,ms

/ϵ ≤ 4L
′
ϕ̃t
/ϵ, the iteration numbers of

lower-level solver is at most O(κ log(4L
′
ϕ̃t
/ϵ)).

To proceed with the proof, we first give an upper bound of ∥∇̂xϕ̃t(xs)∥. Note that

∇̂xϕ̃t(xs) = ∇xf(xs, ŷs)−∇2
xy g̃t(xs, ŷs)(∇2

yy g̃t(xs, ŷs))
−1∇yf(xs, ŷs),

and we have (by Assumption 4.4 and Proposition 4.1)

∥∇xf(xs, ŷs)∥ ≤ Lf , ∥∇yf(xs, ŷs)∥ ≤ Lf , ∥∇yh(xs, ŷs)∥ ≤ Lh;

∥∇2
xy g̃t(xs, ŷs)∥ ≤ Lg, ∥∇2

xyh̃t(xs, ŷs)∥ ≤ Lh, ∥(∇2
yy g̃t(xs, ŷs))

−1∥ ≤ 1/µg̃t .

Further, note that

∇2
xy g̃t(xs, ŷs) = ∇2

xyg(xs, ŷs) + t
k∑

i=1

(
∇2

xyhi(xs, ŷs)

−hi(xs, ŷs)
+

∇xhi(xs, ŷs)∇yhi(xs, ŷs)
⊤

h2i (xs, ŷs)

)
.

In view of Corollary 4.1 we know hi(xs, ŷs) ≤ −M , thus

∥∇2
xy g̃t(xs, ŷs)∥ ≤ Lg + tk

Lh

M
+ tk

L2
h

M2
.

Combining the previous estimates, we reach to the conclusion that

∥∇̂xϕ̃t(xs)∥ ≤ Lf +
Lf

µg̃t

(
Lg + tk

Lh

M
+ tk

L2
h

M2

)
.

From Lemma 4.2, we know that ϕ̃t is locally Lipschitz smooth with parameter L
ϕ̃t,s

for any x

such that ∥x− xs∥ ≤ ds/(2Lh). Since we take ηs = min{ds/(2Lh) · 1/∥∇̂xϕ̃t(xs)∥, 1/Lϕ̃t,s
} so that

∥xs+1 − xs∥ ≤ ds/(2Lh), therefore we know from Lipschitzness that

ϕ̃t(xs+1)− ϕ̃t(xs) ≤ ∇ϕ̃t(xs)
⊤(xs+1 − xs) +

L
ϕ̃t,s

2
∥xs+1 − xs∥2
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where L
ϕ̃t,s

is specified by Lemma 4.2, i.e.

L
ϕ̃t,s

=(Lf + Lf
1

µg̃t

(Lg +
tkLh

ms
+

tkL2
h

ms
2
) + Lf (

1

µg̃t

)2Lg̃t,ms
(Lg +

tkLh

ms
+

tkL2
h

ms
2
) + Lf

1

µg̃t

Lg̃t,ms
)

× (1 +
1

µg̃t

(Lg +
tkLh

ms
+

tkL2
h

ms
2
))

where ms and ds are outputs of Algorithm 2, also L
ϕ̃t,s

is upper bounded by L
ϕ̃t

(see Lemma 4.3).
Therefore we have

ϕ̃t(xs+1)− ϕ̃t(xs) ≤ ∇xϕ̃t(xs)
⊤(xs+1 − xs) +

L
ϕ̃t,s

2
∥xs+1 − xs∥2

(i)

≤ (
L
ϕ̃t,s

2
− 1

ηs
)∥xs+1 − xs∥2 + (∇ϕ̃t(xs)− ∇̂ϕ̃t(xs))

⊤(xs+1 − xs)

≤ (
L
ϕ̃t,s

2
− 1

ηs
)∥xs+1 − xs∥2 + ηs∥∇ϕ̃t(xs)− ∇̂ϕ̃t(xs)∥2 +

1

4ηs
∥xs+1 − xs∥2

(ii)

≤ − 1

4ηs
∥xs+1 − xs∥2 + ηs

( ϵ
4

)2
(F.10)

where (i) is by the property of projection, namely

(xs − ηs∇̂xϕ̃t(xs)− xs+1)
⊤(x− xs+1) ≤ 0, ∀x ∈ X

and taking x = xs gives

∇̂xϕ̃t(xs)
⊤(xs+1 − xs) ≤ − 1

ηs
∥xs − xs+1∥2.

In (ii) we utilize the following result from Lemma 4.4

∥∇xϕ̃t(xs)− ∇̂ϕ̃t(xs)∥ ≤ ϵsL
′
ϕ̃t,ms

≤ ϵ

4
.

Now suppose
1

η2s
∥xs+1 − xs∥2 ≤

ϵ2

4
,

then the proof is already finished. Otherwise we have − 1
4ηs

∥xs+1−xs∥2+ ηs
(
ϵ
4

)2 ≤ 0, and by (F.10)
we know that the algorithm is a descent algorithm. Re-arranging the terms we get:

1

η2s
∥xs+1 − xs∥2 ≤

4(ϕ̃t(xs)− ϕ̃t(xs+1))

ηs
+

ϵ2

4
.

It remains to lower bound ηs so that the right-hand side of the above inequality is upper bounded.
Note that we have defined

ηs = min{1, ds
2Lh

1

∥∇̂xϕ̃t(xs)∥
,

1

L
ϕ̃t,s

}

where
ds
2Lh

1

∥∇̂xϕ̃t(xs)∥
≥ D

4Lh

1

Lf +
Lf

µg̃t

(
Lg + tkLh

M + tk
L2
h

M2

)
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(D is a constant given in Remark 4.3, and ds ≥ D/2 from Corollary 4.1) and

1

L
ϕ̃t,s

≥ 1

L
ϕ̃t

where L
ϕ̃t

is given in Lemma 4.3. Thus we have

1

η2s
∥xs+1 − xs∥2 ≤

4(ϕ̃t(xs)− ϕ̃t(xs+1))

ζ
+

ϵ2

4
.

where

ζ = min

1,
D

4Lh

1

Lf +
Lf

µg̃t

(
Lg + tkLh

M + tk
L2
h

M2

) , 1

L
ϕ̃t

 . (F.11)

By setting maxx∈X ϕ̃t(x) = Φ̃ < +∞ and S = 64Φ̃
5ζϵ2

= O( 1
ζϵ2

), we derive

min
s=0,...,S−1

1

ηs
∥xs − xs+1∥ ≤ 3ϵ

4

by telescoping sum for s = 0, ..., S. Then

min
s=0,...,S−1

1

ηs
∥xs − projX (xs − ηs∇xϕ̃t(xs))∥

≤ min
s=0,...,S−1

1

ηs

(
∥xs − projX (xs − ηs∇xϕ̃t(xs))∥

+ ∥projX (xs − ηs∇xϕ̃t(xs))− projX (xs − ηs∇xϕ̃t(xs))∥
)

≤3ϵ

4
+ max

s=0,...,S−1

1

ηs
∥projX (ηs∇̂xϕ̃t(xs)− ηs∇xϕ̃t(xs))∥

≤3ϵ

4
+ max

s=0,...,S−1
∥∇̂xϕ̃t(xs)−∇xϕ̃t(xs)∥

≤3ϵ

4
+

ϵ

4
=ϵ.

Next, we prove the number of iterations for the inner loop is Õ(t−0.5). Recall that, from the

beginning of the proof, the number of iterations for the inner loop is at most O(κ log(4L
′
ϕ̃t
/ϵ)) from

Theorem 4.2, where κ =
√
Lg̃t,ms

/µg̃t . Since Lg̃t,ms
can be computed by replacing m in Proposition

4.2 with ms, and ms = O(t) in view of Theorem 4.1, we have Lg̃t,ms
= O(t−1), implying κ = O(t−0.5).

According to Lemma 4.4, L
′
ϕ̃t

is polynomial in t. We conclude that O(κ log(4L
′
ϕ̃t
/ϵ)) = Õ(t−0.5).

F.9 Explaination for Remark 4.6

This is because, by the beginning of the proof for Theorem 4.3, the number of iterations for the
inner loop is at most O(κ log(4L

′
ϕ̃t
/ϵ)), where κ = (Lg̃t,ms

/µg̃t)
1/2. Since Lg̃t,ms

can be computed by

replacing m in Proposition 4.2 with ms, and ms = O(t) by Theorem 4.1, we have Lg̃t,ms
= O(t−1),

implying κ = O(t−0.5). According to Lemma F.1, L
′
ϕ̃t

is polynomial in t. We conclude that

O(κ log(4L
′
ϕ̃t
/ϵ)) = Õ(t−0.5).
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F.10 Proof of Theorem 4.4

By Theorem 4.3 we know that for each given ti

1

ηti
∥xi − projX (xi − ηti∇xϕ̃ti(xi))∥ ≤ ϵi (F.12)

where ηti is the stepsize ηs as specified in Theorem 4.3. Note that ηti ≤ 1, also since (F.12) is
decreasing when ηti increases, see Bertsekas (1997, Lemma 2.3.1), we conclude that:

∥xi − projX (xi −∇xϕ̃ti(xi))∥ ≤ ϵi

Now that i → ∞ and xi → x∗, since x∗ is SCSC point, there exists a neighborhood of x∗

where all points are SCSC points (from Lemma B.3 we know the multiplier is continuous and
from Definition 3.1 we know SCSC means the multiplier is positive, which implies an open set).
Therefore we could without loss of generality say that xi are also SCSC points. Consequently
Theorem 3.3 and 3.4 imply

∇xϕ̃ti(xi) → ∇xϕ(x
∗).

Now if we take i → ∞, we know xi → x∗, ϵi → 0. By

∥xi − projX (xi −∇xϕ̃ti(xi))∥ ≤ ϵi

we conclude that
x∗ = projX (x

∗ −∇xϕ(x
∗))

which means that x∗ is the stationary point of ϕ.

F.11 Proof of Lemma C.1

By direct computation, we derive

∇xy
∗
t (x) =−

(
∇2

yyg(x, y
∗
t (x)) +

k∑
i=1

1

t

t2

h2i (x, y
∗
t (x))

∇yhi(x, y
∗
t (x)) (∇yhi(x, y

∗
t (x)))

⊤ +

k∑
i=1

t∇2
yyhi(x, y

∗
t (x))

−hi(x, y∗t (x))

)−1

×

(
∇2

yxg(x, y
∗
t (x)) +

k∑
i=1

1

t

t2

h2i (x, y
∗
t (x))

∇yhi(x, y
∗
t (x)) (∇xhi(x, y

∗
t (x)))

⊤ +
k∑

i=1

t∇2
yxhi(x, y

∗
t (x))

−hi(x, y∗t (x))

)
.

Denote

At(x, y) =∇2
yyg(x, y) +

k∑
i=1

t∇2
yyhi(x, y)

−hi(x, y)
, y ∈ intY(x) (F.13)

Bt(x, y) =∇2
yxg(x, y) +

k∑
i=1

t∇2
yxhi(x, y)

−hi(x, y)
, y ∈ intY(x) (F.14)

vit(x, y) =
t

−hi(x, y)
∇yhi(x, y), y ∈ intY(x) (F.15)

uit(x, y) =
t

−hi(x, y)
∇xhi(x, y), y ∈ intY(x), (F.16)

where intY(x) is the interior of Y(x). These terms are well-defined only when y ∈ intY(x) because
hi(x, y) may be 0 for some index i when y ∈ Y(x) \ intY(x). Note that y∗t (x) ∈ intY(x), then

∇xy
∗
t (x) =

(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1
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×

(
Bt(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
uit(x, y

∗
t (x))

)⊤)
. (F.17)

We first show that∥∥∥∥∥∥
(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1

Bt(x, y
∗
t (x))

∥∥∥∥∥∥
is uniformly bounded. By Corollary 4.1, hi(x, y

∗
t (x)) ≤ −M , where M = min{M1t,M2} for some

constant M1 and M2. This implies

t/(−hi(x, y
∗
t (x))) ≤ max{1/M1, 1/M2} (F.18)

for any i since 0 < t ≤ 1. By Assumption 4.4(4)(7), we have ∥∇2
yxg(x, y

∗
t (x))∥ ≤ Lg and

∥∇2
yxhi(x, y

∗
t (x))∥ ≤ Lh. Thus

∥Bt(x, y
∗
t (x))∥ =

∥∥∥∥∥∇2
yxg(x, y

∗
t (x)) +

k∑
i=1

t∇2
yxhi(x, y

∗
t (x))

−hi(x, y∗t (x))

∥∥∥∥∥ ≤ Lg + kLhmax{1/M1, 1/M2}.

Note that(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1

⪯ (∇2
yyg(x, y

∗
t (x)))

−1 ⪯ 1

µg
I, (F.19)

we conclude that∥∥∥∥(At(x, y
∗
t (x)) +

∑k
i=1

1
t v

i
t(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1
Bt(x, y

∗
t (x))

∥∥∥∥ ≤ 1
µg

(
Lg + kLhmax{1/M1, 1/M2}

)
.

To prove the uniform boundedness of ∥∇xy
∗
t (x)∥, it is sufficient to show that∥∥∥∥∥∥

(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1
1

t
vĵt (x, y

∗
t (x))

(
uĵt (x, y

∗
t (x))

)⊤∥∥∥∥∥∥ (F.20)

is uniformly bounded for any fixed ĵ. We will prove this on the interval (0, T̃ ] and then on [T̃ , 1] for
some constant T̃ . The value of T̃ will be determined at the end of the proof. We prove the uniform
boundedness on (0, T̃ ] by two steps: denoting

X1 = {x ∈ X : hĵ(x, y
∗(x)) active}, (F.21)

we will first show that ∇xy
∗
t (x) is uniformly bounded on an open neighborhood of X1, and then

demonstrate that ∇xy
∗
t (x) is also bounded outside this open neighborhood.

We declare that in this proof, all mentions of openness refer to openness in the sense of the
subspace topology.

Step 1: We first show the uniform boundedness of (F.20) on an open neighborhood of X1 as follows:
we will prove that for any x in X1, there exists an open neighborhood Wx of x such that (F.20) is
bounded above in this open neighborhood Wx. These open neighborhoods form an open cover of the
compact set X1, so we can select a finite subcover {Wi}pi=1. We will show the uniform boundedness
of (F.20) on

⋃p
i=1Wi.
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Now we provide the detailed proof. Set −hĵ(x, y
∗
t (x)) = α, then

(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1
1

t
vĵt (x, y

∗
t (x))

(
uĵt (x, y

∗
t (x))

)⊤
(i)
=

(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1
1

t
vĵt (x, y

∗
t (x))

(
t

−hi(x, y∗t (x))
∇xhĵ(x, y

∗
t (x))

)⊤

(ii)
=

(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1

α−1vĵt (x, y
∗
t (x))

(
∇xhĵ(x, y

∗
t (x))

)⊤
.

(F.22)

In (i) we plug in uĵt (x, y
∗
t (x) =

t
−hi(x,y∗t (x))

∇xhĵ(x, y
∗
t (x)), and in (ii) we utilize −hĵ(x, y

∗
t (x)) = α.

Note that ∥∇xhĵ(x, y
∗
t (x))∥ is uniformly bounded above from Assumption 4.4(6), then it is sufficient

to prove that the following term has uniform bound∥∥∥∥∥∥
(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1

α−1vĵt (x, y
∗
t (x))

∥∥∥∥∥∥ .
Denote

Ct(x, y
∗
t (x)) = At(x, y

∗
t (x)) +

k∑
i ̸=ĵ,i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤
.

It is clear that Ct(x, y
∗
t (x)) ⪰ µgI is positive definite. We have∥∥∥∥∥∥

(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1

α−1vĵt (x, y
∗
t (x))

∥∥∥∥∥∥
=

∥∥∥∥∥
(
Ct(x, y

∗
t (x)) +

1

t
vĵt (x, y

∗
t (x))

(
vĵt (x, y

∗
t (x))

)⊤)−1

α−1vĵt (x, y
∗
t (x))

∥∥∥∥∥
(i)
=

∥∥∥∥∥∥∥α−1

C−1
t (x, y∗t (x))v

ĵ
t (x, y

∗
t (x))−

C−1
t (x, y∗t (x))v

ĵ
t (x, y

∗
t (x))

(
vĵt (x, y

∗
t (x))

)⊤
C−1
t (x, y∗t (x))v

ĵ
t (x, y

∗
t (x))

t+
(
vĵt (x, y

∗
t (x))

)⊤
C−1
t (x, y∗t (x))v

ĵ
t (x, y

∗
t (x))


∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥α−1 tCt(x, y
∗
t (x))

−1vĵt (x, y
∗
t (x))

t+
(
vĵt (x, y

∗
t (x))

)⊤
C−1
t (x, y∗t (x))v

ĵ
t (x, y

∗
t (x))

∥∥∥∥∥∥∥
(ii)
=

∥∥∥∥∥∥∥t2α−2
C−1
t (x, y∗t (x))∇yhĵ(x, y

∗
t (x))

t+ t2α−2
(
∇yhĵ(x, y

∗
t (x))

)⊤
C−1
t (x, y∗t (x))∇yhĵ(x, y

∗
t (x))

∥∥∥∥∥∥∥
≤

∥C−1
t (x, y∗t (x))∇yhĵ(x, y

∗
t (x))∥(

∇yhĵ(x, y
∗
t (x))

)⊤
C−1
t (x, y∗t (x))∇yhĵ(x, y

∗
t (x))

, (F.23)

where (i) is from the Sherman-Morrison formula, and in (ii) we plug in

vĵt (x, y
∗
t (x)) =

t

−hĵ(x, y
∗
t (x))

∇yhĵ(x, y
∗
t (x)) = tα−1∇yhĵ(x, y

∗
t (x))
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Next we need to prove that
(
∇yhĵ(x, y

∗
t (x))

)⊤
C−1
t (x, y∗t (x))∇yhĵ(x, y

∗
t (x)) has a positive lower

bound. Denote

I∗(x) = {i : hi(x, y∗(x)) active} (F.24)

V (x, y; z) = span{∇yhi(x, y) : i ∈ I∗(z), i ̸= ĵ}. (F.25)

For further analysis, we decompose

C−1
t (x, y∗t (x))∇yhĵ(x, y

∗
t (x)) =: wt(x) + wt(x)

⊥,

where wt(x) ∈ V (x, y∗t (x);x0) and wt(x)
⊥ ∈ (V (x, y∗t (x);x0))

⊥ for some point x0. Then we have(
∇yhĵ(x, y

∗
t (x))

)⊤
C−1
t (x, y∗t (x))∇yhĵ(x, y

∗
t (x)

=
〈
∇yhĵ(x, y

∗
t (x)), wt(x) + wt(x)

⊥
〉

=

〈At(x, y
∗
t (x)) +

k∑
i ̸=ĵ,i=1

1

t
vĵt

(
vĵt (x, y

∗
t (x))

)⊤(wt(x) + wt(x)
⊥
)
, wt(x) + wt(x)

⊥

〉
. (F.26)

According to (F.13), we have

At(x, y
∗
t (x)) +

k∑
i ̸=ĵ,i=1

1

t
vĵt

(
vĵt (x, y

∗
t (x))

)⊤
⪰ ∇2

yyg(x, y
∗
t (x)) ⪰ µgI. (F.27)

We aim to estimate the lower bound of ∥wt(x) +wt(x)
⊥∥. It is difficult to obtain a global bound for

∥wt(x) + wt(x)
⊥∥ in X1. This because that the active set I∗(x) changes as x0 varies, and if we fix

the point x0, it’s hard to analyze C−1
t (x, y∗t (x)). So we want to show that for any x0 ∈ X1, there

exists an open neighborhood Wx0 of x0 such that ∥wt(x) + wt(x)
⊥∥ is lower bounded on Wx0 .

To construct this open neighborhood, we embed X1 into {(x, y) : x ∈ X , y ∈ Y(x)} by the
following embedding map

ι : X1 → {(x, y) : x ∈ X , y ∈ Y(x)} (F.28)

x 7→ (x, y∗(x)).

Note that ĵ ∈ I∗(x) if x ∈ X1, by the LICQ assumption, we know the following holds for any
x ∈ X1

∥projV ⊥(x,y∗(x);x)∇yhĵ(x, y
∗(x))∥ > 0.

It is clear that ∥projV ⊥(x,y∗(x);x)∇yhĵ(x, y
∗(x))∥ is lower semicontinuous in x. Therefore, by com-

pactness of X1, there exists a constant δ > 0 such that the following holds for any x ∈ X1

∥projV ⊥(x,y∗(x);x)∇yhĵ(x, y
∗(x))∥ ≥ δ.

For any x0 in X1, we will show that we can find a neighborhood Ux0 of (x0, y
∗(x0)) in {(x, y) : x ∈

X , y ∈ Y(x)} such that

1. For any i /∈ I∗(x0) and (x, y) ∈ Ux0 , we have hi(x, y) ≤ −Hx0 for some constant Hx0 > 0;

2. The vectors {∇yhi(x, y) : i ∈ I∗(x0)} are linear independent;
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3. There exists a constant δx0 > 0 such that ∥projV ⊥(x,y;x0)∇yhĵ(x, y)∥ ≥ δx0 holds for any
(x, y) ∈ Ux0 ;

4. There exists a constant rx0 such that for any x ∈ πx(Ux0), which is the projection of Ux0 onto
the x component, we have {x} ×

(
By∗(x)(rx0) ∩ Y(x)

)
⊂ Ux0 , where By∗(x)(rx0) is a ball in

Y(x) centered at y∗(x) with radius rx0 .

(x0, y∗(x0))

{(x, y∗(x)) : x ∈ X1}

{(x, y∗t (x)) : x ∈ X1}

{(x0, y) : y ∈ Y(x0)}

Rdx × Rdy

{x} × (By∗(x)r(x0) ∩ Y(x))

rx0

Figure 3: Find a spherical neighborhood that satisfies the first three properties, as shown by the
solid hemisphere in the figure, then find a tubular neighborhood within it, as shown by the red
dashed tube in the figure.

The first property can be directly obtained from the continuity of the constraint functions hi(x, y)
and the fact that hi(x, y

∗(x)) ̸= 0 for any i /∈ I∗(x0). The second property holds because
{∇yhi(x0, y

∗(x0)) : i ∈ I∗(x0)} are linear independent by LICQ assumption. This property
ensures that V (x, y;x0) and V ⊥(x, y;x0) are non-degenerate on Ux0 , so projV ⊥(x,y;x0)∇yhĵ(x, y) is
continuous with respect to (x, y). Note that

∥projV ⊥(x0,y∗(x0);x0)∇yhĵ(x0, y
∗(x0))∥ ≥ δ,

by continuity, the third property can also be satisfied. To show the fourth, note that we find a
spherical neighborhood that satisfies the first three conditions. Therefore, within this spherical
neighborhood, we can identify a tubular neighborhood, thus also satisfying the fourth property
easily.

Denote Wx0 = πx(Ux0). The projection map is an open map, so Wx0 is open. we will prove
that ∥wt(x) + wt(x)

⊥∥ is lower bounded on Wx0 . We consider the case that t ≤ (r2x0
µg)/(2k). By

Lemma B.1, we have ∥y∗(x) − y∗t (x)∥ ≤
√

2kt/µg, which means ∥y∗(x) − y∗t (x)∥ ≤ rx0 and thus
(x, y∗t (x)) ∈ Ux0 by the fourth property of the open neighborhood. Then we obtain

∇yhĵ(x, y
∗
t (x))

=

At(x, y
∗
t (x)) +

∑
i/∈I∗(x0),i ̸=ĵ

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤

+
∑

i∈I∗(x0),i ̸=ĵ

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤ (wt(x) + wt(x)
⊥)
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(i)
=

At(x, y
∗
t (x)) +

∑
i/∈I∗(x0),i ̸=ĵ

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤ (wt(x) + wt(x)
⊥)

+
∑

i∈I∗(x0),i ̸=ĵ

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤
wt(x),

where (i) is because ∑
i∈I∗(x0),i ̸=ĵ

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤
wt(x)

⊥ = 0.

On the other hand, we have

∇yhĵ(x, y
∗
t (x)) = projV (x,y∗t (x);x0)∇yhĵ(x, y

∗
t (x)) + projV ⊥(x,y∗t (x);x0)∇yhĵ(x, y

∗
t (x)).

Note that
∑

i∈I∗(x0),i ̸=ĵ
1
t v

i
t(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤
wt(x) ∈ V (x, y∗t (x);x0), we have

projV ⊥(x,y∗t (x);x0)∇yhĵ(x, y
∗
t (x))

=projV ⊥(x,y∗t (x);x0)

At(x, y
∗
t (x)) +

∑
i/∈I∗(x0),i ̸=ĵ

1

t
vĵt (x, y

∗
t (x))

(
vĵt (x, y

∗
t (x))

)⊤ (wt(x) + wt(x)
⊥)

 ,

which means∥∥∥∥∥∥
At(x, y

∗
t (x)) +

∑
i/∈I∗(x0),i ̸=ĵ

1

t
vĵt (x, y

∗
t (x))

(
vĵt (x, y

∗
t (x))

)⊤ (wt(x) + wt(x)
⊥)

∥∥∥∥∥∥
≥

∥∥∥∥∥∥projV ⊥(x,y∗t (x);x0)

At(x, y
∗
t (x)) +

∑
i/∈I∗(x0),i ̸=ĵ

1

t
vĵt (x, y

∗
t (x))

(
vĵt

)⊤ (wt(x) + wt(x)
⊥)

∥∥∥∥∥∥
=
∥∥∥projV ⊥(x,y∗t (x);x0)∇yhĵ(x, y

∗
t (x))

∥∥∥
(i)

≥δx0 . (F.29)

where in (i) we use the third property of the open neighborhood. By (F.18), t/(−hi(x, y
∗
t (x))) is

uniformly bounded. Combining Assumption 4.4(4)(7), it is not hard to see that the maximum

eigenvalue of At(x, y
∗
t (x)) = ∇2

yyg(x, y
∗
t (x)) +

∑k
i=1

t∇2
yyhi(x,y

∗
t (x))

−hi(x,y∗t (x))
has upper bounded denoted as

λmax. According to the first property that for any i /∈ I(x0) and (x, y) ∈ Ux0 , hi(x, y) ≤ −Hx0

holds for some constant Hx0 > 0, we obtain that∥∥∥∥∥∥At(x, y
∗
t (x)) +

∑
i/∈I∗(x0),i ̸=ĵ

1

t
vĵt (x, y

∗
t (x))

(
vĵt (x, y

∗
t (x))

)⊤∥∥∥∥∥∥
=

∥∥∥∥∥∥At(x, y
∗
t (x)) +

∑
i/∈I∗(x0),i ̸=ĵ

1

t

t

−hi(x, y∗t (x))
∇yhi(x, y

∗
t (x))

(
t

−hi(x, y∗t (x))
∇yhi(x, y

∗
t (x))

)⊤
∥∥∥∥∥∥
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=

∥∥∥∥∥∥At(x, y
∗
t (x)) +

∑
i/∈I∗(x0),i ̸=ĵ

t

(−hi(x, y∗t (x)))
2
∇yhi(x, y

∗
t (x)) (∇yhi(x, y

∗
t (x)))

⊤

∥∥∥∥∥∥
≤λmax +

kL2
h

H2
x0

.

Combing (F.29), we obtain ∥wt(x) + wt(x)
⊥∥ ≥ δx0/(λmax +

kL2
h

H2
x0

). Now we proved the lower

boundedness of ∥wt(x) + wt(x)
⊥∥ on Wx0 . By (F.26) and (F.27), we obtain the lower boundedness

of (
∇yhĵ(x, y

∗
t (x))

)⊤
C−1
t (x, y∗t (x))∇yhĵ(x, y

∗
t (x).

According to (F.23), this means the following term is upper bounded on Wx0∥∥∥∥∥∥
(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1

α−1vĵt (x, y
∗
t (x))

∥∥∥∥∥∥ . (F.30)

Recalling (F.22), this further implies the upper boundedness of the following term on Wx0∥∥∥∥∥∥
(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1
1

t
vĵt (x, y

∗
t (x))

(
uĵt (x, y

∗
t (x))

)⊤∥∥∥∥∥∥ . (F.31)

Note that {Wx0}x0∈X1 forms an open cover of X1 in X . Since X1 is compact, we can choose a
finite subcover, denoted as {Wi}pi=1 where Wi = Wx0 for some x0 in X1. Denote Ti = (r2i µg)/(2k),
ri = rx0 from the fourth property and Gi be the upper bound of norm of (F.17) when 0 < t ≤ Ti.
Take T ∗ = min{Ti}, G∗ = max{Gi}. It is not hard to see that the norm of (F.17) is upper bounded
by G∗ for any 0 < t ≤ T ∗ and x in

⋃p
i=1Wi.

Step 2: Consider X2 := X \
⋃p

i=1Wi which is compact in X . Since
⋃p

i=1Wi has covered X1, it
is easy to see that hĵ(x, y

∗(x)) has a negative upper bound in X2, denoted as −Q. We assume

that t ≤ (µgQ
2)/(4kL2

h). By Lemma B.1, we have ∥y∗t (x)− y∗(x)∥ ≤
√

2kt/µg ≤ Q/(2Lh). Thus
|hĵ(x, y

∗
t (x))− hĵ(x, y

∗(x))| ≤ Q/2, which means hĵ(x, y
∗
t (x)) ≤ −Q/2. Then the following term is

uniformly bounded for any x ∈ X2 and 0 < t ≤ (µgQ
2)/(4kL2

h):∥∥∥∥∥∥
(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1
1

t
vĵt (x, y

∗
t (x))

(
uĵt (x, y

∗
t (x))

)⊤∥∥∥∥∥∥
=

∥∥∥∥∥∥
(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1
t

h2
ĵ
(x, y∗t (x))

∇yhĵ(x, y
∗
t (x))

(
∇xhĵ(x, y

∗
t (x))

)⊤∥∥∥∥∥∥
(i)

≤ 1

µg

t

h2
ĵ
(x, y∗t (x))

∥∥∥∇yhĵ(x, y
∗
t (x))

∥∥∥ · ∥∥∥∇xhĵ(x, y
∗
t (x))

∥∥∥
(ii)

≤
4L2

h

µgQ2
. (F.32)

(i) is because (F.19) and vĵt (x, y
∗
t (x)) = t

−hĵ(x,y
∗
t (x))

∇yhĵ(x, y
∗
t (x)). In (ii), we utilize t ≤ 1,

hĵ(x, y
∗
t (x)) ≤ −Q/2 and ∥∇yhĵ(x, y

∗
t (x))∥ ≤ Lh. Furthermore, we obtain (F.17) has bounded norm.
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To conclude, we have proved that ∥∇xy
∗
t (x)∥ is upper bounded for any x in X and 0 < t ≤ T̃ :=

min{T ∗, (µgQ
2)/(4kL2

h)}. If T̃ is less than 1, see ∥∇xy
∗
t (x)∥ as a continuous function defined of the

compact set X × [T̃ , 1], so it has an upper bound. Therefore, we proved that ∥∇xy
∗
t (x)∥ is upper

bounded for any x ∈ X and 0 < t ≤ 1.

F.12 Proof of Lemma C.2

Let −hĵ(x, y
∗
t (x)) = α and use the notations (F.13)-(F.16), we obtain∥∥∥∥∥(∇yy g̃t(x))

−1
t∇yhĵ(x, y

∗
t (x))

(−hĵ(x, y
∗
t (x)))

2

∥∥∥∥∥
=

∥∥∥∥∥∥
(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1

α−1vĵt (x, y
∗
t (x))

∥∥∥∥∥∥ . (F.33)

We have proved this term is uniformly bounded on
⋃p

i=1Wi, as detailed from (F.30) to the end of
Step 1 in Section F.11. For X \

⋃p
i=1Wi, we can assume hĵ(x, y

∗(x)) ≤ −Q. Then∥∥∥∥∥(∇yy g̃t(x))
−1

t∇yhĵ(x, y
∗
t (x))

(−hĵ(x, y
∗
t (x)))

2

∥∥∥∥∥
=

∥∥∥∥∥∥
(
At(x, y

∗
t (x)) +

k∑
i=1

1

t
vit(x, y

∗
t (x))

(
vit(x, y

∗
t (x))

)⊤)−1
t

h2
ĵ
(x, y∗t (x))

∇yhĵ(x, y
∗
t (x))

∥∥∥∥∥∥
is bounded by the same process of (F.32).

F.13 Proof of Lemma C.3

Following the argument at the end of Step 1 in proof of Lemma C.1, we select an open neighborhood
{Wi}pi=1 of X1.

If x ∈
⋃p

i=1Wi, denote β1 = mini{ri}. According to the fourth property of the open neighbor-
hood, ∥y − y∗(x)∥ ≤ ri for any i means y is in the Wi for any i. By replicating the proof in Step
1 and simply substituting y∗t (x) with y, we can obtain ∥(∇yy g̃t(x, y))

−1∇yxg̃t(x, y)∥ ≤ G∗ for any
y ∈ intY(x) such that ∥y − y∗(x)∥ ≤ β1.

If x ∈ X \
⋃p

i=1Wi, denote β2 = Q/(2Lh). Similar to Step 2 in proof of Lemma C.1, we
can also find that ∥(∇yy g̃t(x, y))

−1∇yxg̃t(x, y)∥ is upper bounded for any y ∈ intY(x) such that
∥y − y∗(x)∥ ≤ β2. Define β = min{β1, β2}, we complete the proof.

F.14 Proof of Lemma C.4

The proof is similar to that of Lemma 4.2 and Lemma 4.3. First we aim to prove the local Lipschitz
smoothness of ϕ̃t(x). Following (F.6), for any x1, x2 satisfies ∥x1 − x∥, ∥x2 − x∥ ≤ d

2Lh
, we need to

estimate

∥∇xϕ̃t(x1)−∇xϕ̃t(x2)∥
≤∥(∇xf(x1, y

∗
t (x1))−∇xf(x2, y

∗
t (x2)))∥ (F.34)

+
∥∥∇2

xy g̃t(x2, y
∗
t (x2))(∇2

yy g̃t(x2, y
∗
t (x2)))

−1(∇yf(x2, y
∗
t (x2))−∇yf(x1, y

∗
t (x1)))

∥∥ (F.35)

+
∥∥∇2

xy g̃t(x2, y
∗
t (x2))((∇2

yy g̃t(x2, y
∗
t (x2)))

−1 − (∇2
yy g̃t(x1, y

∗
t (x1)))

−1)∇yf(x1, y
∗
t (x1))

∥∥ (F.36)
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+
∥∥(∇2

xy g̃t(x2, y
∗
t (x2))−∇2

xy g̃t(x1, y
∗
t (x1)))(∇2

yy g̃t(x1, y
∗
t (x1)))

−1∇yf(x1, y
∗
t (x1))

∥∥ . (F.37)

For (F.34), by Assumption 4.4(2), we have

∥(∇xf(x1, y
∗
t (x1))−∇xf(x2, y

∗
t (x2)))∥ ≤ Lf∥(x1, y∗t (x1))− (x2, y

∗
t (x2))∥.

We evaluate (F.35), (F.36) and (F.37) separately.

The term (F.35): According to Lemma C.1, ∥∇2
xy g̃t(x, y

∗
t (x))(∇2

yy g̃t(x, y
∗
t (x)))

−1∥ ≤ J1. Com-
bining the Lipschitz smoothness of f(x, y) from Assumption4.4(2). Therefore∥∥∇2

xy g̃t(x2, y
∗
t (x2))(∇2

yy g̃t(x2, y
∗
t (x2)))

−1(∇yf(x2, y
∗
t (x2))−∇yf(x1, y

∗
t (x1)))

∥∥
≤J1Lf∥(x1, y∗t (x1))− (x2, y

∗
t (x2))∥.

The term (F.36): By Assumption 4.4(1), ∥∇yf(x, y)∥ ≤ Lf . To estimate∥∥∇2
xy g̃t(x2, y

∗
t (x2))((∇2

yy g̃t(x2, y
∗
t (x2)))

−1 − (∇2
yy g̃t(x1, y

∗
t (x1)))

−1)∇yf(x1, y
∗
t (x1))

∥∥ ,
It is sufficient to evaluate the following term∥∥∇2

xy g̃t(x2, y
∗
t (x2))((∇2

yy g̃t(x2, y
∗
t (x2)))

−1 − (∇2
yy g̃t(x1, y

∗
t (x1)))

−1)
∥∥

(i)
=
∥∥∇2

xy g̃t(x2, y
∗
t (x2))(∇2

yy g̃t(x2, y
∗
t (x2)))

−1(∇2
yy g̃t(x2, y

∗
t (x2))−∇2

yy g̃t(x1, y
∗
t (x1)))(∇2

yy g̃t(x1, y
∗
t (x1)))

−1
∥∥

(ii)

≤J1∥(∇2
yy g̃t(x1, y

∗
t (x1)))

−1(∇2
yy g̃t(x2, y

∗
t (x2))−∇2

yy g̃t(x1, y
∗
t (x1)))∥, (F.38)

where (i) is due to A−1 − B−1 = −A−1(A − B)B−1, and (ii) is from Lemma C.1, which says
∥∇2

xy g̃t(x, y
∗
t (x))(∇2

yy g̃t(x, y
∗
t (x)))

−1∥ ≤ J1. To estimate (F.38), we directly compute as following

∥(∇2
yy g̃t(x1, y

∗
t (x1)))

−1(∇2
yy g̃t(x2, y

∗
t (x2))−∇2

yy g̃t(x1, y
∗
t (x1)))∥

=
∥∥(∇2

yy g̃t(x1, y
∗
t (x1)))

−1
[
∇2

yyg(x1, y
∗
t (x1))−∇2

yyg(x2, y
∗
t (x2)) (F.39)

+t
k∑

i=1

hi(x1, y
∗
t (x1))∇2

yyhi(x2, y
∗
t (x2))− hi(x2, y

∗
t (x2))∇2

yyhi(x1, y
∗
t (x1))

hi(x1, y∗t (x1))hi(x2, y
∗
t (x2))

(F.40)

+t
k∑

i=1

h2i (x2, y
∗
t (x2))∇yhi(x1, y

∗
t (x1))∇yhi(x1, y

∗
t (x1))

⊤ − h2i (x1, y
∗
t (x1))∇yhi(x2, y

∗
t (x2))∇yhi(x2, y

∗
t (x2))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

]∥∥∥∥∥ .
(F.41)

We respectively evaluate (F.39), (F.40), and (F.41).
For (F.39) and (F.40), we use Lipschitz continuity of ∇2

yyg(x, y) from Assumption 4.4(5), the

result that hi(x2, y
∗
t (x2)) ≤ −mloc from Lemma 4.2, and the same process in (F.3). Note that

∇2
yy g̃(x, y) ⪰ µgI, we get∥∥(∇2

yy g̃t(x1, y
∗
t (x1)))

−1
[
∇2

yyg(x1, y
∗
t (x1))−∇2

yyg(x2, y
∗
t (x2))

+t
k∑

i=1

hi(x1, y
∗
t (x1))∇2

yyhi(x2, y
∗
t (x2))− hi(x2, y

∗
t (x2))∇2

yyhi(x1, y
∗
t (x1))

hi(x1, y∗t (x1))hi(x2, y
∗
t (x2))

]∥∥∥∥∥
≤ 1

µg

∥∥∇2
yyg(x1, y

∗
t (x1))−∇2

yyg(x2, y
∗
t (x2))

∥∥
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+
1

µg

∥∥∥∥∥t
k∑

i=1

hi(x1, y
∗
t (x1))∇2

yyhi(x2, y
∗
t (x2))− hi(x2, y

∗
t (x2))∇2

yyhi(x1, y
∗
t (x1))

hi(x1, y∗t (x1))hi(x2, y
∗
t (x2))

∥∥∥∥∥
≤ 1

µg

(
Lg + tk

(
Lh

mloc
+

LhLh

(mloc)
2

))
∥(x1, y∗t (x1))− (x2, y

∗
t (x2))∥

For (F.41), Using the same method of adding and subtracting like terms as in (F.4), and applying
the triangle inequality, we obtain

∥∥∥∥∥(∇2
yy g̃t(x1, y

∗
t (x1)))

−1t

k∑
i=1

(
h2i (x2, y

∗
t (x2))∇yhi(x1, y

∗
t (x1))∇yhi(x1, y

∗
t (x1))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

−h2i (x1, y
∗
t (x1))∇yhi(x2, y

∗
t (x2))∇yhi(x2, y

∗
t (x2))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

)∥∥∥∥
≤t

k∑
i=1

[∥∥∥∥(∇2
yy g̃t(x1, y

∗
t (x1)))

−1

(
h2i (x2, y

∗
t (x2))∇yhi(x1, y

∗
t (x1))∇yhi(x1, y

∗
t (x1))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

−h2i (x2, y
∗
t (x2))∇yhi(x1, y

∗
t (x1))∇yhi(x2, y

∗
t (x2))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

)∥∥∥∥
+

∥∥∥∥(∇2
yy g̃t(x1, y

∗
t (x1)))

−1

(
h2i (x2, y

∗
t (x2))∇yhi(x1, y

∗
t (x1))∇yhi(x2, y

∗
t (x2))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

−h2i (x1, y
∗
t (x1))∇yhi(x1, y

∗
t (x1))∇yhi(x2, y

∗
t (x2))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

)∥∥∥∥
+

∥∥∥∥(∇2
yy g̃t(x1, y

∗
t (x1)))

−1

(
h2i (x1, y

∗
t (x1))∇yhi(x1, y

∗
t (x1))∇yhi(x2, y

∗
t (x2))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

−h2i (x1, y
∗
t (x1))∇yhi(x2, y

∗
t (x2))∇yhi(x2, y

∗
t (x2))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

)∥∥∥∥]
(i)

≤ tkLhLh

µg (mloc)
2 ∥(x1, y

∗
t (x1))− (x2, y

∗
t (x2))∥.

+ t
k∑

i=1

∥∥∥∥(∇2
yy g̃t(x1, y

∗
t (x1)))

−1

(
h2i (x2, y

∗
t (x2))∇yhi(x1, y

∗
t (x1))∇yhi(x2, y

∗
t (x2))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

− h2i (x1, y
∗
t (x1))∇yhi(x1, y

∗
t (x1))∇yhi(x2, y

∗
t (x2))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

)∥∥∥∥
+

tkLhLh

µg (mloc)
2 ∥(x1, y

∗
t (x1))− (x2, y

∗
t (x2))∥.

=t
k∑

i=1

∥∥∥∥(∇2
yy g̃t(x1, y

∗
t (x1)))

−1

(
h2i (x2, y

∗
t (x2))∇yhi(x1, y

∗
t (x1))∇yhi(x2, y

∗
t (x2))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

− h2i (x1, y
∗
t (x1))∇yhi(x1, y

∗
t (x1))∇yhi(x2, y

∗
t (x2))

⊤

h2i (x1, y
∗
t (x1))h

2
i (x2, y

∗
t (x2))

)∥∥∥∥ (F.42)

+ 2
tkLhLh

µg (mloc)
2 ∥(x1, y

∗
t (x1))− (x2, y

∗
t (x2))∥.

In (i) we used the result that hi(x1, y
∗
t (x1)), hi(x2, y

∗
t (x2)) ≤ −mloc from Lemma 4.2, Lips-
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chitz smoothness of hi(x, y) from Assumption 4.4(7), boundedness of ∇yhi(x, y) from 4.4(6), and
∇2

yy g̃t(x, y
∗
t (x)) ⪰ µgI. Finally, we need to evaluate (F.42), i.e.

t
k∑

i=1

∥∥∥∥(∇yy g̃t(x1, y
∗
t (x1)))

−1

(
(−hi(x2, y

∗
t (x2)))

2∇yhi(x1, y
∗
t (x1))(∇yhi(x2, y

∗
t (x2)))

⊤

(hi(x1, y∗t (x1)hi(x2, y
∗
t (x2)))

2

−(−hi(x1, y
∗
t (x1)))

2∇yhi(x1, y
∗
t (x1))(∇yhi(x2, y

∗
t (x2)))

⊤

(hi(x1, y∗t (x1)hi(x2, y
∗
t (x2)))

2

)∥∥∥∥
=t

k∑
i=1

∥∥∥∥(∇yy g̃t(x1, y
∗
t (x1)))

−1

(
(hi(x1, y

∗
t (x1))− hi(x2, y

∗
t (x2)))∇yhi(x1, y

∗
t (x1))(∇yhi(x2, y

∗
t (x2)))

⊤

h2i (x1, y
∗
t (x1)hi(x2, y

∗
t (x2))

+
(hi(x1, y

∗
t (x1))− hi(x2, y

∗
t (x2)))∇yhi(x1, y

∗
t (x1))(∇yhi(x2, y

∗
t (x2)))

⊤

hi(x1, y∗t (x1)h
2
i (x2, y

∗
t (x2))

)∥∥∥∥ . (F.43)

From Lemma C.3, we have

t

k∑
i=1

∥∥∥∥(∇yy g̃t(x1, y
∗
t (x1)))

−1

(
(hi(x1, y

∗
t (x1))− hi(x2, y

∗
t (x2)))∇yhi(x1, y

∗
t (x1))(∇yhi(x2, y

∗
t (x2)))

⊤

h2i (x1, y
∗
t (x1)hi(x2, y

∗
t (x2))

)∥∥∥∥
≤J2

kL2
h

mloc
∥(x1, y∗t (x1))− (x2, y

∗
t (x2))∥.

For the second term in (F.43), we observe that

k∑
i=1

∥∥∥∥(∇yy g̃t(x1, y
∗
t (x1)))

−1 t

(
(hi(x1, y

∗
t (x1))− hi(x2, y

∗
t (x2)))∇yhi(x1, y

∗
t (x1))(∇yhi(x2, y

∗
t (x2)))

⊤

hi(x1, y∗t (x1)h
2
i (x2, y

∗
t (x2))

)∥∥∥∥
=

k∑
i=1

∥∥∥∥(∇yy g̃t(x1, y
∗
t (x1)))

−1 t

(
(hi(x1, y

∗
t (x1))− hi(x2, y

∗
t (x2)))∇yhi(x1, y

∗
t (x1))(∇yhi(x2, y

∗
t (x2)))

⊤

h2i (x1, y
∗
t (x1)hi(x2, y

∗
t (x2))

× hi(x1, y
∗
t (x1)

hi(x2, y∗t (x2))

)∥∥∥∥
≤J2

kL2
h

mloc

∣∣∣∣−hi(x1, y
∗
t (x1))

−hi(x2, y∗t (x2))

∣∣∣∣ ∥(x1, y∗t (x1))− (x2, y
∗
t (x2))∥

(i)

≤J2
kL2

h

mloc

∣∣∣∣−hi(x, y
∗
t (x)) +

m
2

−hi(x, y∗t (x))− m
2

∣∣∣∣ ∥(x1, y∗t (x1))− (x2, y
∗
t (x2))∥

=J2
kL2

h

mloc

∣∣∣∣1 + m

−hi(x, y∗t (x))− m
2

∣∣∣∣ ∥(x1, y∗t (x1))− (x2, y
∗
t (x2))∥

≤J2
kL2

h

mloc

(
1 +

∣∣∣∣ m

m− m
2

∣∣∣∣) ∥(x1, y∗t (x1))− (x2, y
∗
t (x2))∥

≤J2
3kL2

h

mloc
∥(x1, y∗t (x1))− (x2, y

∗
t (x2))∥,

where (i) is because hi(x1, y
∗
t (x1)), hi(x2, y

∗
t (x2)), hi(x, y

∗
t (x)) ≤ 0, hi(x, y

∗
t (x)) is Lh(1 + J1)

Lipschitz continuous, and ∥x− x1∥, ∥x− x2∥ ≤ m/(2Lh(1 + J1)). To summarize, we get∥∥∇2
xy g̃t(x2, y

∗
t (x2))((∇2

yy g̃t(x2, y
∗
t (x2)))

−1 − (∇2
yy g̃t(x1, y

∗
t (x1)))

−1)∇yf(x1, y
∗
t (x1))

∥∥
≤LfJ1

(
Lg

µg
+

tkLh

µgmloc
+

tkLhLh

µg (mloc)
2 + 2

tkLhLh

µg (mloc)
2 + J2

kL2
h

mloc
+ J2

3kL2
h

mloc

)
∥(x1, y∗t (x1))− (x2, y

∗
t (x2))∥.
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The term (F.37): This term can be evaluated directly by Lemma 4.1 and Lemma C.1 as follows:∥∥(∇2
xy g̃t(x2, y

∗
t (x2))−∇2

xy g̃t(x1, y
∗
t (x1)))(∇2

yy g̃t(x1, y
∗
t (x1)))

−1∇yf(x1, y
∗
t (x1))

∥∥
≤Lg̃t,mlocJ1∥(x1, y∗t (x1))− (x2, y

∗
t (x2))∥.

Note that ∥(x1, y∗t (x1))− (x2, y
∗
t (x2))∥ ≤ ∥∇xy

∗
t (x)∥∥x1 − x2∥ ≤ J1∥x1 − x2∥ from Lemma C.1.

Setting

L
loc
ϕ̃t

=J1

(
Lf + LfJ1 + LfJ1

(
Lg

µg
+

tkLh

µgmloc
+

tkLhLh

µg (mloc)
2

+2
tkLhLh

µg (mloc)
2 + J2

kL2
h

mloc
+ J2

3kL2
h

mloc

)
+ Lg̃t,mlocJ1

)
,

we conclude

∥∇xϕ̃t(x1)−∇xϕ̃t(x2)∥ ≤ L
loc
ϕ̃t
∥x1 − x2∥.

Following the proof of Lemma 4.3 around (F.7), mloc has a lower bound M∗ = m(D/4) = O(t).

By design of Lg̃t,mloc in Lemma 4.4, we know that Lg̃t,mloc ≤ Lg̃t,M∗ = O(1/t), so L
loc
ϕ̃t

has an upper
bound

L
ϕ̃t

=J1

(
Lf + LfJ1 + LfJ1

(
Lg

µg
+

tkLh

µgM∗ +
tkLhLh

µg (M∗)2

+2
tkLhLh

µg (M∗)2
+ J2

kL2
h

M∗ + J2
3kL2

h

M∗

)
+ Lg̃t,M∗J1

)
=O(

1

t
).

F.15 Proof of Theorem C.1

The proof is almost identical to the proof of Theorem 4.3. The only noteworthy point is that ∇̂xϕ̃t(xs)
now is upper bounded. This can be proved as follows: due to Lemma B.1, ∥y∗(xs)− y∗t (xs)∥ ≤ β/2.
The lower-level algorithm will guarantee (by Theorem 4.2) ∥ŷs − y∗t (xs)∥ ≤ β/2, which means
∥y∗(xs)− ŷs∥ ≤ β. By Lemma C.3, ∥(∇yy g̃t(xs, ŷs))

−1∇yxg̃t(xs, ŷs)∥ ≤ J3, so

∥∇̂xϕ̃t(xs)∥ = ∥∇xf(xs, ỹs)−∇2
xy g̃(xs, ỹs)(∇2

yy g̃(xs, ỹs))
−1∇yf(xs, ỹs)∥

≤ ∥∇xf(xs, ỹs)∥+ ∥∇2
xy g̃(xs, ỹs)(∇2

yy g̃(xs, ỹs))
−1∥∥∇yf(xs, ỹs)∥

≤ Lf (1 + J3).

The remaining steps to complete the proof are analogous to those in Theorem 4.3.
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